留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向大型激光装置集成安装的机器人自动路径规划

陈静 独伟锋 裴国庆 熊召 杨科 周海

陈静, 独伟锋, 裴国庆, 等. 面向大型激光装置集成安装的机器人自动路径规划[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240360
引用本文: 陈静, 独伟锋, 裴国庆, 等. 面向大型激光装置集成安装的机器人自动路径规划[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240360
Chen Jing, Du Weifeng, Pei Guoqing, et al. Automatic path planning of robot for integrated installation of large laser device[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240360
Citation: Chen Jing, Du Weifeng, Pei Guoqing, et al. Automatic path planning of robot for integrated installation of large laser device[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240360

面向大型激光装置集成安装的机器人自动路径规划

doi: 10.11884/HPLPB202537.240360
基金项目: 四川省科技计划项目(2022ZYD0114)
详细信息
    作者简介:

    陈 静,chenjing_19901102@163.com

    通讯作者:

    杨 科,famousky@126.com

  • 中图分类号: TP242.6

Automatic path planning of robot for integrated installation of large laser device

  • 摘要: 针对大型激光装置集成安装过程中的机器人路径规划问题,提出一种简单有效的改进A*算法。该算法较传统A*算法进行了三步改进,第一步是限制可行走方向,避免出现传统A*算法发生穿越障碍物情况;二是将其启发函数优化为加权曼哈顿距离函数,加速向x方向或者y方向扩展节点,改善限制可行走方向带来的遍历节点数激增现象,三是引入转弯惩罚项,减少路径规划过程中的转弯次数,提高路径规划搜索效率和质量。在不同大小的栅格地图中验证三步改进A*算法的性能,并与传统A*算法进行比较。实验结果表明,简单地图中,三步改进A*算法遍历节点数略高于传统A*算法,转弯次数与传统A*算法相当,但路径避障性能明显优于传统A*算法,更有利于机器人安全行走。复杂地图中,综合考虑遍历节点数、转弯次数和路径长度的优先关系后,可以实现调节三步改进A*算法参数至路径规划结果最优。
  • 图  1  A*算法二维栅格地图模型

    Figure  1.  2-D raster map model of A* algorithm

    图  2  传统A*算法搜索路径

    Figure  2.  Search path based on traditional A* algorithm

    图  3  限制可行走方向A*算法搜索路径

    Figure  3.  Search path based on A* algorithm with limited walking direction

    图  4  基于加权曼哈顿距离A*算法搜索路径

    Figure  4.  Search path based on A* algorithm of weighted Manhattan distance

    图  5  移动机器人直行和转弯示意图

    Figure  5.  Schematic diagram of mobile robot going straight and turning

    图  6  路径规划结果(${\lambda _1}$=2,${\lambda _2}$=1,m=5)

    Figure  6.  Path planning result (${\lambda _1}$=2,${\lambda _2}$=1,m=5)

    图  7  简单地图障碍物设置

    Figure  7.  Obstacles of simple map

    图  8  本文使用的50*50复杂地图

    Figure  8.  The 50*50 complex map used in this paper

    图  9  不同调节参数下的三步改进A*算法在复杂地图中的路径规划结果

    Figure  9.  Path planning results of quadratic optimization A* algorithm under different adjustment parameters in complex maps

    表  1  改进 A*算法和传统 A*算法在简单地图中的性能比较

    Table  1.   Performance comparison between improved A* algorithm and traditional A* algorithm in simple map

    experimental group number algorithm traversed nodes turn times path length
    1 traditional A* algorithm 64 8 27.21
    2 A*-1 algorithm(${\lambda _1}$=${\lambda _2}$=1,m=0) 175 13 34
    3 A*-1* algorithm(${\lambda _1}$=${\lambda _2}$ =1,m=1) 199 6 36
    4 A*-2 algorithm(${\lambda _1}$=2,${\lambda _2}$=1,m=0) 96 11 34
    5 A*-2* algorithm(${\lambda _1}$=2,${\lambda _2}$=1,m=2) 122 6 36
    下载: 导出CSV

    表  2  不同调节参数下的三步改进A*算法在复杂地图中的路径规划结果统计

    Table  2.   Statistics of path planning results of quadratic optimization A* algorithm under different adjustment parameters in complex map

    experimental group numberalgorithmtraversed nodesturn timespath length
    1-1A*-1 algorithm(${\lambda _1}$=${\lambda _2}$=1,m=0)12792998
    1-2A*-1* algorithm(${\lambda _1}$=${\lambda _2}$=1,m=1)12171698
    2-1A*-2 algorithm(${\lambda _1}$=1,${\lambda _2}$=2,m=0)33633106
    2-2A*-2 algorithm(${\lambda _1}$=1,${\lambda _2}$ =5,m=0)24533106
    2-3A*-2* algorithm(${\lambda _1}$=1,${\lambda _2}$=2,m=2)36727104
    2-4A*-2* algorithm(${\lambda _1}$=1,${\lambda _2}$=5,m=5)31031106
    2-5A*-2* algorithm(${\lambda _1}$=1,${\lambda _2}$=2,m=5)37627104
    3-1A*-2 algorithm(${\lambda _1}$=5,${\lambda _2}$= 1,m=0)27229110
    3-2A*-2* algorithm(${\lambda _1}$=5,${\lambda _2}$=1,m=5)33927114
    下载: 导出CSV
  • [1] 郑万国, 邓颖, 周维, 等. 激光聚变研究中心激光技术研究进展[J]. 强激光与粒子束, 2013, 25(12):3082-3090 doi: 10.3788/HPLPB20132512.3082

    Zheng Wanguo, Deng Ying, Zhou Wei, et al. Development of laser technology in research center of laser fusion[J]. High Power Laser and Particle Beams, 2013, 25(12): 3082-3090 doi: 10.3788/HPLPB20132512.3082
    [2] 熊召, 尹灵钰, 裴国庆, 等. 面向大型激光装置的智能装配调度[J]. 强激光与粒子束, 2023, 35:092002 doi: 10.11884/HPLPB202335.230170

    Xiong Zhao, Yin Lingyu, Pei Guoqing, et al. Intelligent assembly scheduling for large laser devices[J]. High Power Laser and Particle Beams, 2023, 35: 092002 doi: 10.11884/HPLPB202335.230170
    [3] Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271. doi: 10.1007/BF01386390
    [4] 李鼎鑫. 复杂环境下移动机器人路径规划方法研究与应用[D]. 北京: 北京工业大学, 2021: 1-5

    Li Dingxin. Research and application of path planning method for mobile robot in complex environment[D]. Beijing: Beijing University of Technology, 2021: 1-5
    [5] Guruji A K, Agarwal H, Parsediya D K. Time-efficient A* algorithm for robot path planning[J]. Procedia Technology, 2016, 23: 144-149. doi: 10.1016/j.protcy.2016.03.010
    [6] Qi Jie, Yang Hui, Sun Haixin. MOD-RRT*: a sampling-based algorithm for robot path planning in dynamic environment[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8): 7244-7251. doi: 10.1109/TIE.2020.2998740
    [7] Luo Qiang, Wang Haibao, Zheng Yan, et al. Research on path planning of mobile robot based on improved ant colony algorithm[J]. Neural Computing and Applications, 2020, 32(6): 1555-1566. doi: 10.1007/s00521-019-04172-2
    [8] Ajeil F H, Ibraheem I K, Azar A T, et al. Grid-based mobile robot path planning using aging-based ant colony optimization algorithm in static and dynamic environments[J]. Sensors, 2020, 20: 1880. doi: 10.3390/s20071880
    [9] Xin Junfeng, Zhong Jiabao, Yang Fengru, et al. An improved genetic algorithm for path-planning of unmanned surface vehicle[J]. Sensors, 2019, 19: 2640. doi: 10.3390/s19112640
    [10] 吕太之, 赵春霞, 夏平平. 基于同步可视图构造和A*算法的全局路径规划[J]. 南京理工大学学报, 2017, 41(3):313-321

    Lv Taizhi, Zhao Chunxia, Xia Pingping. Global path planning based on simultaneous visibility graph construction and A* algorithm[J]. Journal of Nanjing University of Science and Technology, 2017, 41(3): 313-321
    [11] 孔继利, 张鹏坤, 刘晓平. 双向搜索机制的改进A*算法研究[J]. 计算机工程与应用, 2021, 57(8):231-237 doi: 10.3778/j.issn.1002-8331.2002-0016

    Kong Jili, Zhang Pengkun, Liu Xiaoping. Research on improved A* algorithm of bidirectional search mechanism[J]. Computer Engineering and Applications, 2021, 57(8): 231-237 doi: 10.3778/j.issn.1002-8331.2002-0016
    [12] 郭晓静, 杨卓橙. 基于邻域拓展的静态路径规划A*算法研究[J]. 计算机工程与应用, 2022, 58(8):168-174 doi: 10.3778/j.issn.1002-8331.2010-0222

    Guo Xiaojing, Yang Zhuocheng. Improved A* algorithm based on neighbor extension in static environment[J]. Computer Engineering and Applications, 2022, 58(8): 168-174 doi: 10.3778/j.issn.1002-8331.2010-0222
    [13] 胡蔚旻, 靳文舟. 改进平滑A*算法的多AGV路径规划[J]. 计算机工程与应用, 2020, 56(16):204-210 doi: 10.3778/j.issn.1002-8331.2001-0090

    Hu Weimin, Jin Wenzhou. Multi-AGV path planning based on improved smooth A* algorithm[J]. Computer Engineering and Applications, 2020, 56(16): 204-210 doi: 10.3778/j.issn.1002-8331.2001-0090
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  15
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-15
  • 修回日期:  2025-04-13
  • 录用日期:  2025-03-24
  • 网络出版日期:  2025-04-23

目录

    /

    返回文章
    返回