Electron radiation effects on a 4H-SiC bipolar phototransistor
-
摘要: 当光电晶体管偏置在5 V下,辐照前,其暗电流约为58 nA,对365 nm紫外光的响应度约为31 A/W;器件经过10 MeV电子束辐照后,暗电流的数量级下降到10−11 A,响应度下降到原来的1/8左右。辐照后,器件的响应度受偏置电压的影响明显,随着偏置电压的减小而下降,当光电晶体管偏置在3 V下,响应度下降到2.25 A/W。电子束辐照还会影响紫外探测器的开关响应,使响应的总时间变长。结合光电晶体管工作时的电路模型,电子束辐照后引起光产生电流减小、晶体管增益下降和串联电阻增大是引起光电探测器紫外响应性能退化的主要原因。Abstract: The electron irradiation effect of a 4H-SiC npn bipolar transistor UV detector is investigated in this paper. When the phototransistor is biased at 5 V, before irradiation, its dark current is about 58 nA, and its responsivity to 365 nm UV light is about 31A/W. After the device is irradiated by a 10 MeV e-beam, the order of magnitude of the dark current decreases to 10−11 A, and the responsivity decreases to about 1/8 of the original one. After irradiation, the responsivity of the device is significantly affected by the bias voltage: it decreases as the bias voltage decreases, and when the phototransistor is biased at 3 V, the responsivity decreases to 2.25 A/W. E-beam irradiation also affects the switching response of the UV detector, which results in a longer total time of response. In this paper, the circuit model of phototransistor operation is established, and the decrease of light generation current, the decrease of transistor gain and the increase of series resistance caused by electron beam irradiation are the main reasons for the degradation of photodetector’s UV response performance.
-
表 1 实验结果辐照前后探测器性能对比
Table 1. Comparison of detector performance before and after irradiation
dark current (Vce=5 V)/A photocurrent (Vce=5 V)/A photo responsivity/(A·W−1) 110 µW/cm2 220 µW/cm2 Vce=3V Vce=4V Vce=5V pre-irradiation 5.86×10−8 7.43×10−7 1.22×10−6 31.094 31.288 31.306 electron-irradiated 3.73×10−11 9.05×10−8 1.21×10−7 2.251 2.973 3.723 -
[1] 郑伟, 张乃霁, 朱思琪, 等. 极紫外探测器的研究进展[J]. 中国激光, 2024, 51:0701008Zheng Wei, Zhang Naiji, Zhu Siqi, et al. Extreme ultraviolet detectors: a review[J]. Chinese Journal of Lasers, 2024, 51: 0701008 [2] 吴春艳, 张宇梁, 贺新辉, 等. 窄禁带半导体紫外光电探测研究进展[J]. 光子学报, 2024, 53:0753303 doi: 10.3788/gzxb20245307.0753303Wu Chunyan, Zhang Yuliang, He Xinhui, et al. Progress on ultraviolet photodetection based on narrow bandgap semiconductors (Invited)[J]. Acta Photonica Sinica, 2024, 53: 0753303 doi: 10.3788/gzxb20245307.0753303 [3] 李正, 吴健, 白忠雄, 等. 4H-SiC探测器的γ辐照影响研究[J]. 强激光与粒子束, 2019, 31:086002 doi: 10.11884/HPLPB201931.180345Li Zheng, Wu Jian, Bai Zhongxiong, et al. Study of gamma irradiation effect on the 4H-SiC detector[J]. High Power Laser and Particle Beams, 2019, 31: 086002 doi: 10.11884/HPLPB201931.180345 [4] 靳浩. 空间辐射对CMOS像感器性能影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2012Jin Hao. Research on CMOS image sensor of space radiation effect[D]. Harbin: Harbin Institute of Technology, 2012 [5] 韩星, 王永琴, 曾娅秋, 等. 双极晶体管空间辐射效应的研究进展[J]. 环境技术, 2024, 42(7):188-194 doi: 10.3969/j.issn.1004-7204.2024.07.042Han Xing, Wang Yongqin, Zeng Yaqiu, et al. Advance in space radiation effects of bipolar transistors[J]. Environmental Technology, 2024, 42(7): 188-194 doi: 10.3969/j.issn.1004-7204.2024.07.042 [6] 苏琳琳, 杨成东. 空穴主导雪崩倍增的短波长SiC紫外单光子探测器[J]. 中国激光, 2023, 50:1801001Su Linlin, Yang Chengdong. Short-wavelength SiC ultraviolet single photon detector based on hole-dominated avalanche multiplication[J]. Chinese Journal of Lasers, 2023, 50: 1801001 [7] 杨成东, 夏开鹏, 马文烨, 等. 高耐压和低暗计数SiC紫外雪崩光电二极管[J]. 光学学报, 2023, 43:0304001 doi: 10.3788/AOS221314Yang Chengdong, Xia Kaipeng, Ma Wenye, et al. SiC UV avalanche photodiode with high voltage withstanding capability and low dark count rate[J]. Acta Optica Sinica, 2023, 43: 0304001 doi: 10.3788/AOS221314 [8] 张峰, 付钊, 张泽阳, 等. 宽禁带半导体SiC紫外光电探测器研究进展[J]. 厦门大学学报(自然科学版), 2023, 62(2):254-268Zhang Feng, Fu Zhao, Zhang Zeyang, et al. Research progress of wide band gap semiconductor SiC ultraviolet photodetectors[J]. Journal of Xiamen University (Natural Science), 2023, 62(2): 254-268 [9] Guo Shuwen, Zhao Xiaolong, Fu Xianghe, et al. High-temperature performance of the 4H-SiC n-p-n bipolar UV phototransistor[J]. IEEE Sensors Journal, 2022, 22(22): 21613-21618. [10] Guo Shuwen, Zhao Xiaolong, He Yongning, et al. Low-voltage and high-gain ultraviolet detector based on 4H-SiC n-p-n bipolar phototransistor[J]. IEEE Transactions on Electron Devices, 2021, 68(5): 2342-2346. [11] Dong Peng, Qin Yazhou, Yu Xuegong, et al. Electron radiation effects on the 4H-SiC PiN diodes characteristics: an insight from point defects to electrical degradation[J]. IEEE Access, 2019, 7: 170385-170391,. [12] Kaji N, Niwa H, Suda J, et al. Ultrahigh-voltage SiC p-i-n diodes with improved forward characteristics[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 374-381. doi: 10.1109/TED.2014.2352279 [13] 刘帅, 熊慧凡, 杨霞, 等. 电子辐照对4H-SiC MOS材料缺陷的影响[J]. 人工晶体学报, 2024, 53(9):1536-1541 doi: 10.3969/j.issn.1000-985X.2024.09.007Liu Shuai, Xiong Huifan, Yang Xia, et al. Effects of electron irradiation on defects of 4H-SiC MOS materials[J]. Journal of Synthetic Crystals, 2024, 53(9): 1536-1541 doi: 10.3969/j.issn.1000-985X.2024.09.007 [14] 付祥和, 赵小龙, 彭文博, 等. 电子辐照对SiC功率MOSFET器件动态特性的影响机理[J]. 西安交通大学学报, 2022, 56(11):95-103 doi: 10.7652/xjtuxb202211010Fu Xianghe, Zhao Xiaolong, Peng Wenbo, et al. Impact of electron irradiation on dynamic characteristics of SiC power MOSFETs[J]. Journal of Xi'an Jiaotong University, 2022, 56(11): 95-103 doi: 10.7652/xjtuxb202211010 [15] Dong Peng, Yan Xiaolan, Zhang Lin, et al. Relating gain degradation to defects production in neutron-irradiated 4H-SiC transistors[J]. IEEE Transactions on Nuclear Science, 2021, 68(3): 312-317. [16] 贾向红, 邹鸿, 许峰, 等. 空间电子辐射风险及其防护策略研究进展[J]. 航天医学与医学工程, 2014, 27(6):453-457Jia Xianghong, Zou Hong, Xu Feng, et al. Research progress of space electrons radiation risk and its protection strategy[J]. Space Medicine & Medical Engineering, 2014, 27(6): 453-457 [17] 张现亮, 朱敏波, 李琴. 空间辐照机理与防护技术研究[J]. 空间电子技术, 2007, 4(3):17-20,30Zhang Xianliang, Zhu Minbo, Li Qin. Research on the mechanism and protection technology of space irradiation[J]. Space Electronic Technology, 2007, 4(3): 17-20,30 [18] 王勋, 张凤祁, 陈伟, 等. 中国散裂中子源在大气中子单粒子效应研究中的应用评估[J]. 物理学报, 2019, 68:052901 doi: 10.7498/aps.68.20181843Wang Xun, Zhang Fengqi, Chen Wei, et al. Application and evaluation of Chinese Spallation Neutron Source in single-event effects testing[J]. Acta Physica Sinica, 2019, 68: 052901 doi: 10.7498/aps.68.20181843 [19] Masud A, Islam S, Khosru Q D M. Modified Ebers-Moll model of magnetic bipolar transistor[C]//Proceedings of 2015 IEEE International Conference on Electron Devices and Solid-State Circuits. 2015: 812-815. [20] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 7版. 北京: 电子工业出版社, 2008Liu Enke, Zhu Bingsheng, Luo Jinsheng. Semiconductor physics[M]. 7th ed. Beijing: Publishing House of Electronics Industry, 2008 [21] Buono B, Ghandi R, Domeij M, et al. Modeling and characterization of the on-resistance in 4H-SiC power BJTs[J]. IEEE Transactions on Electron Devices, 2011, 58(7): 2081-2087. doi: 10.1109/TED.2011.2141141 [22] Liu Chaoming, Li Xingji, Yang Jianqun, et al. Radiation defects and annealing study on PNP bipolar junction transistors irradiated by 3-MeV protons[J]. IEEE Transactions on Nuclear Science, 2015, 62(6): 3381-3386. doi: 10.1109/TNS.2015.2498201 [23] 刘超铭. 双极晶体管辐射损伤效应及深能级缺陷研究[D]. 哈尔滨: 哈尔滨工业大学, 2013Liu Chaoming. Radiation damage effects and deep level defects in bipolar junction transistor[D]. Harbin: Harbin Institute of Technology, 2013 [24] 尚也淳, 张义门, 张玉明. SiC抗辐照特性的分析[J]. 西安电子科技大学学报, 1999, 26(6):807-810Shang Yechun, Zhang Yimen, Zhang Yuming. Analysis of the SiC irradiation resistance[J]. Journal of Xidian University, 1999, 26(6): 807-810 [25] Ma Guoliang, Zhang Yanqing, Li Heyi, et al. Effect of primary knocked-on atoms on conductivity compensation in N-type 4H-SiC irradiated by 1 MeV electrons, 25 MeV C ions and 40 MeV Si ions[C]//Proceedings of 2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits. 2019: 1-5. [26] 刘晓星, 袁智明, 李岳彬, 等. 10 MeV高能电子辐照对4H-SiC晶体结构和电学性质的影响[J]. 首都师范大学学报(自然科学版), 2022, 43(2):29-35,41Liu Xiaoxing, Yuan Zhiming, Li Yuebin, et al. Effect of 10 MeV high-energy electron irradiation on the crystal structure and electrical properties of 4H-SiC[J]. Journal of Capital Normal University (Natural Science Edition), 2022, 43(2): 29-35,41 [27] Castaldini A, Cavallini A, Rigutti L, et al. Deep levels by proton and electron irradiation in 4H–SiC[J]. Journal of Applied Physics, 2005, 98: 053706. [28] Yang Guixia, Pang Yuanlong, Yang Yuqing, et al. High-dose electron radiation and unexpected room-temperature self-healing of epitaxial SiC Schottky barrier diodes[J]. Nanomaterials, 2019, 9(2): 194. doi: 10.3390/nano9020194 [29] Çınar K, Coşkun C, Aydoğan Ş, et al. The effect of the electron irradiation on the series resistance of Au/Ni/6H-SiC and Au/Ni/4H-SiC Schottky contacts[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(6): 616-621. doi: 10.1016/j.nimb.2009.12.019 -