留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S3FEL束流测试平台注入段废束桶束窗设计

张浩 赵峰 林涵文 李磊 黄礼明 尉伟

张浩, 赵峰, 林涵文, 等. S3FEL束流测试平台注入段废束桶束窗设计[J]. 强激光与粒子束, 2025, 37: 054001. doi: 10.11884/HPLPB202537.240365
引用本文: 张浩, 赵峰, 林涵文, 等. S3FEL束流测试平台注入段废束桶束窗设计[J]. 强激光与粒子束, 2025, 37: 054001. doi: 10.11884/HPLPB202537.240365
Zhang Hao, Zhao Feng, Lin Hanwen, et al. Design of injector dump beam window for the electron beam test platform of S3FEL[J]. High Power Laser and Particle Beams, 2025, 37: 054001. doi: 10.11884/HPLPB202537.240365
Citation: Zhang Hao, Zhao Feng, Lin Hanwen, et al. Design of injector dump beam window for the electron beam test platform of S3FEL[J]. High Power Laser and Particle Beams, 2025, 37: 054001. doi: 10.11884/HPLPB202537.240365

S3FEL束流测试平台注入段废束桶束窗设计

doi: 10.11884/HPLPB202537.240365
基金项目: 深圳市科技计划项目(JCYJ20220530140807017)
详细信息
    作者简介:

    张 浩,zhanghao@mail.iasf.ac.cn

    通讯作者:

    尉 伟,weiwei@mail.iasf.ac.cn

  • 中图分类号: TL503.1

Design of injector dump beam window for the electron beam test platform of S3FEL

  • 摘要: 深圳中能高重复频率X射线自由电子激光(S3FEL)的预研项目中的束流测试平台,将用于攻克高重复频率自由电子激光中的多项重大关键技术。对S3FEL束流测试平台中注入段废束桶束窗进行结构设计,结合电子束流参数设计了一种钎焊水冷铜窗。通过有限元分析方法对束窗进行热结构计算,分析了不同冷却通道和冷却流速下的温度、应力和变形。综合考虑冷却效果、流致振动和经济效益因素,最终选取了M型水冷通道和流速为1 m/s的束窗设计。并对该束窗处的真空分布进行计算,结果满足了设计要求,验证了设计的合理性,能够确保装置稳定可靠运行。
  • 图  1  不同冷却通道的束窗

    Figure  1.  Beam window with different cooling channels

    图  2  不同冷却通道束窗的温度和应力

    Figure  2.  Temperature and stress of beam window with different cooling channels

    图  3  M型冷却通道束窗的温度、应力和变形分布

    Figure  3.  Temperature, stress and deformation distribution of beam window with M-type cooling channel

    图  4  冷却水流速为1 m/s的M型冷却通道束窗温度、应力和变形分布

    Figure  4.  Temperature, stress and deformation distribution of beam window with M-type cooling channel and cooling water flow rate 1 m/s

    图  5  束窗处的局部图和真空分布

    Figure  5.  Layout and vacuum distribution of beam window

    表  1  材料物性参数

    Table  1.   Physical parameters of materials

    material density/
    (kg·m−3)
    elastic modulus/
    GPa
    Poisson’s
    ratio
    yield stress/
    MPa
    thermal conductivity/
    (W·m−1·K−1)
    thermal expansion
    coefficient/℃−1
    316L 7980 193.0 0.300 290 15 12.0×10−6
    A5083 2660 71.0 0.330 145 117 23.0×10−6
    Ti-6Al-4V 4430 113.8 0.360 880 6.7 8.6×10−6
    Be 1844 303.0 0.100 240 216 12.0×10−6
    OFHC 8940 115.0 0.343 340 391 17.7×10−6
    下载: 导出CSV

    表  2  束窗材料物性参数

    Table  2.   Material physical parameters of beam window

    material density/
    (kg·m−3)
    melting
    point/℃
    elastic modulus/
    GPa
    Poisson’s
    ratio
    yield stress/
    MPa
    thermal conductivity/
    (W·m−1·K−1)
    thermal expansion
    coefficient/℃−1
    316L 7980 1375 193 0.300 290 15 12.0×10−6
    OFHC 8940 1083 115 0.343 340 391 17.7×10−6
    下载: 导出CSV

    表  3  材料放气率

    Table  3.   Material outgassing rates

    material conditions outgassing rate[19] /(Pa·L·s−1·cm−2) calculation outgassing rate/(Pa·L·s−1·cm−2)
    316L 20 h at 100 ℃ 10−11 1×10−9
    copper 20 h at 100 ℃ 10−10 1×10−8
    copper (with Gaussian heat source ) 20 h at 100 ℃ 10−10 5×10−8
    下载: 导出CSV
  • [1] Decking W, Abeghyan S, Abramian P, et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator[J]. Nature Photonics, 2020, 14(6): 391-397. doi: 10.1038/s41566-020-0607-z
    [2] Pandey S, Bean R, Sato T, et al. Time-resolved serial femtosecond crystallography at the European XFEL[J]. Nature Methods, 2020, 17(1): 73-78. doi: 10.1038/s41592-019-0628-z
    [3] Halavanau A, Decker F J, Emma C, et al. Very high brightness and power LCLS-II hard X-ray pulses[J]. Journal of Synchrotron Radiation, 2019, 26(3): 635-646. doi: 10.1107/S1600577519002492
    [4] Zhang Baichao, Li Xiaoshen, Liu Qi, et al. High repetition-rate photoinjector laser system for S3FEL[J]. Frontiers in Physics, 2023, 11: 1181862. doi: 10.3389/fphy.2023.1181862
    [5] Xu Zhongmin, Zhang Weiqing, Yang Chuan, et al. Shape optimization design of the offset mirror in FEL-1 beamline at S3FEL[J]. Scientific Reports, 2023, 13: 9653. doi: 10.1038/s41598-023-36645-9
    [6] Huang Liming, E Dejun, Tao Kai, et al. Simulation study of coupled particle cascade and finite element analysis for beam dump of DALS[J]. Radiation Detection Technology and Methods, 2024, 8(2): 1254-1263. doi: 10.1007/s41605-023-00444-7
    [7] 张浩, 黄礼明, 赵峰, 等. 一种高重频废束桶束窗的设计及热结构分析[J]. 强激光与粒子束, 2023, 35:034001 doi: 10.11884/HPLPB202335.220350

    Zhang Hao, Huang Liming, Zhao Feng, et al. Design and thermal structure analysis of a dump beam window for high repetition frequency[J]. High Power Laser and Particle Beams, 2023, 35: 034001 doi: 10.11884/HPLPB202335.220350
    [8] 马文静, 赵壮, 王思慧, 等. 合肥先进光源前端光子吸收器的设计及热分析[J]. 强激光与粒子束, 2022, 34:104007 doi: 10.11884/HPLPB202234.220057

    Ma Wenjing, Zhao Zhuang, Wang Sihui, et al. Design and thermal analysis of front-end photon absorber at HALF[J]. High Power Laser and Particle Beams, 2022, 34: 104007 doi: 10.11884/HPLPB202234.220057
    [9] 李勇军. 上海光源高热负载前端区的系统设计与研究[D]. 上海: 中国科学院上海应用物理研究所, 2016

    Li Yongjun. Design and study of high heat load front-end at SSRF[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2016
    [10] 陈丽萍. 上海光源储存环光子吸收器结构设计与研制[J]. 真空科学与技术学报, 2009, 29(5):546-551 doi: 10.3969/j.issn.1672-7126.2009.05.18

    Chen Liping. Photon absorber development for storage ring of Shanghai synchrotron radiation facility[J]. Chinese Journal of Vacuum Science and Technology, 2009, 29(5): 546-551 doi: 10.3969/j.issn.1672-7126.2009.05.18
    [11] 聂小军, 刘磊, 康玲, 等. 一种废束站束窗结构设计与优化[J]. 强激光与粒子束, 2018, 30:105105 doi: 10.11884/HPLPB201830.180057

    Nie Xiaojun, Liu Lei, Kang Ling, et al. Structure design and optimization of a dump beam window[J]. High Power Laser and Particle Beams, 2018, 30: 105105 doi: 10.11884/HPLPB201830.180057
    [12] Poo-arporn Y, Duangnil S, Bamrungkoh D, et al. Gas tungsten arc welding of copper to stainless steel for ultra-high vacuum applications[J]. Journal of Materials Processing Technology, 2020, 277: 116490. doi: 10.1016/j.jmatprotec.2019.116490
    [13] Böhlen T T, Cerutti F, Chin M P W, et al. The FLUKA code: developments and challenges for high energy and medical applications[J]. Nuclear Data Sheets, 2014, 120: 211-214. doi: 10.1016/j.nds.2014.07.049
    [14] 马忠剑, 随艳峰, 王庆斌, 等. FLUKA程序在法拉第杯设计中的应用[J]. 强激光与粒子束, 2013, 25(1):207-210 doi: 10.3788/HPLPB20132501.0207

    Ma Zhongjian, Sui Yanfeng, Wang Qingbin, et al. Application of Monte Carlo code FLUKA to design of Faraday cup[J]. High Power Laser and Particle Beams, 2013, 25(1): 207-210 doi: 10.3788/HPLPB20132501.0207
    [15] 翟红雨, 程健, 陈银华, 等. 离子能量分析器测量特性的仿真研究[J]. 强激光与粒子束, 2020, 32:084002 doi: 10.11884/HPLPB202032.190459

    Zhai Hongyu, Cheng Jian, Chen Yinhua, et al. Simulation study on measurement characteristics of ion energy analyzer[J]. High Power Laser and Particle Beams, 2020, 32: 084002 doi: 10.11884/HPLPB202032.190459
    [16] 卢鹏, 潘艳秋, 俞路, 等. 固体激光微通道冷却器内流动特性的数值模拟[J]. 强激光与粒子束, 2014, 26:051008 doi: 10.11884/HPLPB201426.051008

    Lu Peng, Pan Yanqiu, Yu Lu, et al. Numerical simulation of flow characteristic in solid-state laser microchannel cooler[J]. High Power Laser and Particle Beams, 2014, 26: 051008 doi: 10.11884/HPLPB201426.051008
    [17] Chai Shuo, Zhu Wanqian, Zhang Zhanfei, et al. Research and optimization of flow-induced vibrations in a water-cooled monochromator[J]. Review of Scientific Instruments, 2024, 95: 035124. doi: 10.1063/5.0191196
    [18] Notari L, Pasquali M, Carra F, et al. Materials adopted for particle beam windows in relevant experimental facilities[J]. Physical Review Accelerators and Beams, 2024, 27: 024801. doi: 10.1103/PhysRevAccelBeams.27.024801
    [19] Malyshev O B. Vacuum in particle accelerators: modelling, design and operation of beam vacuum systems[M]. Weinheim: Wiley-VCH, 2019.
    [20] 王姣龙, 王国栋, 刘霄, 等. NEG泵抽气性能仿真模拟与测试系统设计[J]. 真空科学与技术学报, 2024, 44(2):139-145

    Wang Jiaolong, Wang Guodong, Liu Xiao, et al. Simulation and design of test system for the pumping performance of NEG pump[J]. Chinese Journal of Vacuum Science and Technology, 2024, 44(2): 139-145
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  61
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-18
  • 修回日期:  2025-01-13
  • 录用日期:  2025-01-13
  • 网络出版日期:  2025-02-12
  • 刊出日期:  2025-03-31

目录

    /

    返回文章
    返回