留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多物理一体化临界安全程序INSL-UniFoam的研究

叶思远 李泓龙 李玥航 柴翔 刘晓晶 何东豪

叶思远, 李泓龙, 李玥航, 等. 多物理一体化临界安全程序INSL-UniFoam的研究[J]. 强激光与粒子束, 2025, 37: 026001. doi: 10.11884/HPLPB202537.240369
引用本文: 叶思远, 李泓龙, 李玥航, 等. 多物理一体化临界安全程序INSL-UniFoam的研究[J]. 强激光与粒子束, 2025, 37: 026001. doi: 10.11884/HPLPB202537.240369
Ye Siyuan, Li Honglong, Li Yuehang, et al. Development of INSL-UniFoam: a multi-physics integrated criticality safety analysis program[J]. High Power Laser and Particle Beams, 2025, 37: 026001. doi: 10.11884/HPLPB202537.240369
Citation: Ye Siyuan, Li Honglong, Li Yuehang, et al. Development of INSL-UniFoam: a multi-physics integrated criticality safety analysis program[J]. High Power Laser and Particle Beams, 2025, 37: 026001. doi: 10.11884/HPLPB202537.240369

多物理一体化临界安全程序INSL-UniFoam的研究

doi: 10.11884/HPLPB202537.240369
详细信息
    作者简介:

    叶思远,eru_iluvatar@sjtu.edu.cn

    通讯作者:

    何东豪,donghaohe@sjtu.edu.cn

  • 中图分类号: TL329+.2

Development of INSL-UniFoam: a multi-physics integrated criticality safety analysis program

  • 摘要: 快中子脉冲堆(FBR)是临界安全分析研究的重要对象。它们具有几何形状不规则、强瞬态过程、多物理紧密耦合以及复杂的反馈特性等特点。为了精确模拟并分析快中子脉冲堆在瞬发超临界过程中各物理场的变化情况,开发了一门基于OpenFOAM的多物理核临界安全分析程序,名为INSL-UniFoam。该程序集成了离散纵坐标中子输运求解器、传热和应力-应变求解器,能够模拟快中子脉冲堆的瞬态超临界脉冲过程。程序在Godiva-I基准题中进行了验证,对稳态条件下的多个物理参数进行了敏感性分析。同时,程序还对Godiva-I的瞬态脉冲场景进行了计算并与实验结果进行了比对。结果表明,程序在中子学计算方面具有较高的精度,能精确反映脉冲堆的功率、中子通量的分布情况。同时瞬态耦合计算所得的脉冲功率曲线、峰值功率、裂变产额等方面与参考解符合良好,能够较好地反映脉冲过程并且能够完整地输出脉冲过程的功率、温度、应力应变在内多个物理场的分布情况并与实验结果较好地匹配。
  • 图  1  INSL-UniFoam程序计算流程图

    Figure  1.  Calculation flowchart of INSL-UniFoam

    图  2  不同软件生成的Godiva-I网格模型

    Figure  2.  Meshing model of Godiva-I by different tools

    图  3  S4和S8全对称求积组示意图

    Figure  3.  S4 and S8 fully symmetric quadrature sets

    图  4  29.5 μs初始反应堆周期下反应堆功率随时间变化情况

    Figure  4.  Total reactor power over time with initial reactor periods of 29.5 μs

    图  5  反应堆平均温度以及平均体积膨胀率随时间变化情况

    Figure  5.  Changes in average temperature and average volume expansion rate of the reactor over time

    图  6  功率最大点的功率场分布情况以及脉冲峰结束后的应力分布情况

    Figure  6.  Distribution of power field at the point of maximum power and the stress distribution after the pulse peak

    表  1  不同散射阶数下keff计算结果

    Table  1.   Calculated keff of Godiva-I in different orders of scattering matrices

    scattering matrix keff error/10−5
    OpenMC 0.99456
    P0 1.09455 10003
    P1 0.97971 1487
    P3 0.98583 869
    下载: 导出CSV

    表  2  不同网格下的keff计算结果

    Table  2.   Calculated keff in different meshes

    meshing tool cell number keff error/10−5
    OpenMC 0.99456
    blockMesh 56000 0.99272 184
    Gmsh 60187 0.99971 515
    384803 0.99529 73
    下载: 导出CSV

    表  3  不同能群数量对应的能量网格划分

    Table  3.   Energy grids of different energy group structures

    33 group energy grid/MeV 8 group energy grid/MeV
    1.964033E+01 1.831564E-01 2.034684E-03 2.260329E-05 1.00E+01
    1.000000E+01 1.110900E-01 1.234098E-03 1.370959E-05 8.21E-01
    6.065307E+00 6.737947E-02 7.485183E-04 8.315287E-06 5.53E-03
    3.678794E+00 4.086771E-02 4.539993E-04 4.000000E-06 4.00E-06
    2.231302E+00 2.478752E-02 3.043248E-04 5.400000E-07 6.25E-07
    1.353353E+00 1.503439E-02 1.486254E-04 1.000000E-07 2.80E-07
    8.208500E-01 9.118820E-03 9.166088E-05 1.000010E-11 1.40E-07
    4.978707E-01 5.530844E-03 6.790405E-05 5.80E-08
    3.019738E-01 3.354626E-03 4.016900E-05 1.00E-11
    下载: 导出CSV

    表  4  不同能群数量下keff计算结果

    Table  4.   Calculated keff in different energy groups

    energy group number keff Error/10−5
    OpenMC 0.99456
    1 0.95974 3482
    8 0.99282 174
    33 0.99377 79
    下载: 导出CSV

    表  5  选取不同求积组的keff计算结果

    Table  5.   Calculated keff in different quadrature sets

    quadrature set keff error/10−5
    OpenMC 0.99456
    S2 0.94014 5442
    S4 0.99272 184
    S8 0.99282 174
    下载: 导出CSV

    表  6  热应力求解使用的物性参数

    Table  6.   Thermo-mechanical parameters of Godiva-I

    density/
    (kg·m−3)
    Poisson’s
    ratio/GPa
    Young’s
    modulus
    specific heat
    capacity/(J·kg−1·K−1)
    thermal conductivity/
    (W·m−1·K−1)
    coefficient of linear
    expansion/K−1
    18740 0.23 208 117.7 27.5 1.39$ \times $10-5
    下载: 导出CSV

    表  7  进一步对比时热应力求解使用的物性参数

    Table  7.   Additional thermo-mechanical parameters of Godiva-I

    peak power/W full width at half maximum/s
    INSL-UniFoam 7.397E+8 8.4E-5
    experiment result 8.223E+8 11.1E-5
    下载: 导出CSV
  • [1] Kadioglu S Y, Knoll D A, De Oliveira C. Multiphysics analysis of spherical fast burst reactors[J]. Nuclear Science and Engineering, 2009, 163(2): 132-143. doi: 10.13182/NSE09-07
    [2] Briggs J B, Scott L, Nouri A. The international criticality safety benchmark evaluation project[J]. Nuclear Science and Engineering, 2003, 145(1): 1-10. doi: 10.13182/NSE03-14
    [3] Wimett T F. Los Alamos: Los Alamos Scientific Lab, 1965.
    [4] Aufiero M, Fiorina C, Laureau A, et al. Serpent–OpenFOAM coupling in transient mode: simulation of a Godiva prompt critical burst[C]//Proceedings of Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method. 2015.
    [5] Wilson S C, Biegalski S R, Coats R L. Computational modeling of coupled thermomechanical and neutron transport behavior in a Godiva-like nuclear assembly[J]. Nuclear science and engineering, 2007, 157(3): 344-353. doi: 10.13182/NSE06-28
    [6] 高辉, 钟力晗, 梁文峰, 等. 基于反应性温度系数的金属型脉冲堆波形计算[J]. 原子能科学技术, 2017, 51(5):798-802 doi: 10.7538/yzk.2017.51.05.0798

    Gao Hui, Zhong Lihan, Liang Wenfeng, et al. Waveform calculation of metal burst reactors based on reactivity temperature coefficient[J]. Atomic Energy Science and Technology, 2017, 51(5): 798-802 doi: 10.7538/yzk.2017.51.05.0798
    [7] Fiorina C, Aufiero M, Pelloni S, et al. A time-dependent solver for coupled neutron-transport thermal-mechanics calculations and simulation of a Godiva prompt-critical burst[C]//Proceedings of the 2014 22nd International Conference on Nuclear Engineering. 2014.
    [8] 郭树伟, 陈珍平, 江新标, 等. 金属核燃料快中子脉冲堆核-热-力耦合计算方法研究[J]. 核动力工程, 2022, 43(4):31-37

    Guo Shuwei, Chen Zhenping, Jiang Xinbiao, et al. Study on neutronic/thermal-mechanical coupling calculation method for fast-neutron pulse reactor with metallic nuclear fuel[J]. Nuclear Power Engineering, 2022, 43(4): 31-37
    [9] Wang Lipeng, Guo Shuwei, Hu Tianliang, et al. Transient simulation and parameter sensitivity analysis of Godiva experiment based on MOOSE platform[J]. Energies, 2023, 16(18): 6575. doi: 10.3390/en16186575
    [10] Blanco J A. Neutronic, thermohydraulic and thermomechanical coupling for the modeling of criticality accidents in nuclear systems[D]. Grenoble: Université Grenoble Alpes, 2020.
    [11] 杨波. 离散纵标法求解含有各向异性散射的输运方程[D]. 绵阳: 中国工程物理研究院, 2005

    Yang Bo. Solution of transport equations with anisotropic scattering using the discrete ordinates method[D]. Mianyang: China Academy of Engineering Physics, 2005
    [12] Jasak H, Jemcov A, Tuković Z. OpenFOAM: a C++ library for complex physics simulations[C]//Proceedings of the International Workshop on Coupled Methods in Numerical Dynamics. 2007.
    [13] Eymard R, Gallouët T, Herbin R. Finite volume methods[J]. Handbook of Numerical Analysis, 2000, 7: 713-1018.
    [14] Peterson R, Newby G. Lady Godiva: an unreflected uranium-235 critical assembly[R]. Los Alamos: Los Alamos National Lab, 1953.
    [15] Geuzaine C, Remacle J F. Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities[J]. International Journal for Numerical Methods in Engineering, 2009, 79(11): 1309-1331. doi: 10.1002/nme.2579
    [16] Wimett T, Engle L, Graves G, et al. Time behavior of Godiva through prompt critical[R]. Los Alamos: Los Alamos Scientific Lab, 1956.
    [17] 张驰, 周琦, 朱庆福, 等. 金属核燃料系统瞬态特性分析研究[J]. 原子能科学技术, 2016, 50(12):2170-2174 doi: 10.7538/yzk.2016.50.12.2170

    Zhang Chi, Zhou Qi, Zhu Qingfu, et al. Transient characteristic analysis of nuclear metallic fuel system[J]. Atomic Energy Science and Technology, 2016, 50(12): 2170-2174 doi: 10.7538/yzk.2016.50.12.2170
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  30
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-22
  • 修回日期:  2024-12-24
  • 录用日期:  2024-12-24
  • 网络出版日期:  2025-01-17
  • 刊出日期:  2025-02-12

目录

    /

    返回文章
    返回