Development of INSL-UniFoam: a multi-physics integrated criticality safety analysis program
-
摘要: 快中子脉冲堆(FBR)是临界安全分析研究的重要对象。它们具有几何形状不规则、强瞬态过程、多物理紧密耦合以及复杂的反馈特性等特点。为了精确模拟并分析快中子脉冲堆在瞬发超临界过程中各物理场的变化情况,开发了一门基于OpenFOAM的多物理核临界安全分析程序,名为INSL-UniFoam。该程序集成了离散纵坐标中子输运求解器、传热和应力-应变求解器,能够模拟快中子脉冲堆的瞬态超临界脉冲过程。程序在Godiva-I基准题中进行了验证,对稳态条件下的多个物理参数进行了敏感性分析。同时,程序还对Godiva-I的瞬态脉冲场景进行了计算并与实验结果进行了比对。结果表明,程序在中子学计算方面具有较高的精度,能精确反映脉冲堆的功率、中子通量的分布情况。同时瞬态耦合计算所得的脉冲功率曲线、峰值功率、裂变产额等方面与参考解符合良好,能够较好地反映脉冲过程并且能够完整地输出脉冲过程的功率、温度、应力应变在内多个物理场的分布情况并与实验结果较好地匹配。Abstract: Fast Burst Reactors (FBRs) are important subjects for criticality safety analysis research. They are characterized by irregular geometry, strong transient processes, tight multi-physics coupling, and complex feedback characteristics. This paper introduces an OpenFOAM based multi-physics nuclear criticality safety analysis code named INSL-UniFoam. It integrates discrete ordinate neutron transport solver, heat transfer and stress-strain solvers to detailly model the prompt super-critical burst pulse of FBRs. The UniFoam is first verified in the Godiva-I benchmark under both the steady-state condition and several transient scenarios. The results demonstrate that the program aligns well with the reference solution in terms of Keff calculation, peak power, and fission yield. Furthermore, it is capable of comprehensively outputting the distributions of power, temperature, and stress-strain throughout the pulse process.
-
表 1 不同散射阶数下keff计算结果
Table 1. Calculated keff of Godiva-I in different orders of scattering matrices
scattering matrix keff error/10−5 OpenMC 0.99456 − P0 1.09455 10003 P1 0.97971 1487 P3 0.98583 869 表 2 不同网格下的keff计算结果
Table 2. Calculated keff in different meshes
meshing tool cell number keff error/10−5 OpenMC − 0.99456 − blockMesh 56000 0.99272 184 Gmsh 60187 0.99971 515 384803 0.99529 73 表 3 不同能群数量对应的能量网格划分
Table 3. Energy grids of different energy group structures
33 group energy grid/MeV 8 group energy grid/MeV 1.964033E+01 1.831564E-01 2.034684E-03 2.260329E-05 1.00E+01 1.000000E+01 1.110900E-01 1.234098E-03 1.370959E-05 8.21E-01 6.065307E+00 6.737947E-02 7.485183E-04 8.315287E-06 5.53E-03 3.678794E+00 4.086771E-02 4.539993E-04 4.000000E-06 4.00E-06 2.231302E+00 2.478752E-02 3.043248E-04 5.400000E-07 6.25E-07 1.353353E+00 1.503439E-02 1.486254E-04 1.000000E-07 2.80E-07 8.208500E-01 9.118820E-03 9.166088E-05 1.000010E-11 1.40E-07 4.978707E-01 5.530844E-03 6.790405E-05 5.80E-08 3.019738E-01 3.354626E-03 4.016900E-05 1.00E-11 表 4 不同能群数量下keff计算结果
Table 4. Calculated keff in different energy groups
energy group number keff Error/10−5 OpenMC 0.99456 − 1 0.95974 3482 8 0.99282 174 33 0.99377 79 表 5 选取不同求积组的keff计算结果
Table 5. Calculated keff in different quadrature sets
quadrature set keff error/10−5 OpenMC 0.99456 − S2 0.94014 5442 S4 0.99272 184 S8 0.99282 174 表 6 热应力求解使用的物性参数
Table 6. Thermo-mechanical parameters of Godiva-I
density/
(kg·m−3)Poisson’s
ratio/GPaYoung’s
modulusspecific heat
capacity/(J·kg−1·K−1)thermal conductivity/
(W·m−1·K−1)coefficient of linear
expansion/K−118740 0.23 208 117.7 27.5 1.39$ \times $10-5 表 7 进一步对比时热应力求解使用的物性参数
Table 7. Additional thermo-mechanical parameters of Godiva-I
peak power/W full width at half maximum/s INSL-UniFoam 7.397E+8 8.4E-5 experiment result 8.223E+8 11.1E-5 -
[1] Kadioglu S Y, Knoll D A, De Oliveira C. Multiphysics analysis of spherical fast burst reactors[J]. Nuclear Science and Engineering, 2009, 163(2): 132-143. doi: 10.13182/NSE09-07 [2] Briggs J B, Scott L, Nouri A. The international criticality safety benchmark evaluation project[J]. Nuclear Science and Engineering, 2003, 145(1): 1-10. doi: 10.13182/NSE03-14 [3] Wimett T F. Los Alamos: Los Alamos Scientific Lab, 1965. [4] Aufiero M, Fiorina C, Laureau A, et al. Serpent–OpenFOAM coupling in transient mode: simulation of a Godiva prompt critical burst[C]//Proceedings of Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method. 2015. [5] Wilson S C, Biegalski S R, Coats R L. Computational modeling of coupled thermomechanical and neutron transport behavior in a Godiva-like nuclear assembly[J]. Nuclear science and engineering, 2007, 157(3): 344-353. doi: 10.13182/NSE06-28 [6] 高辉, 钟力晗, 梁文峰, 等. 基于反应性温度系数的金属型脉冲堆波形计算[J]. 原子能科学技术, 2017, 51(5):798-802 doi: 10.7538/yzk.2017.51.05.0798Gao Hui, Zhong Lihan, Liang Wenfeng, et al. Waveform calculation of metal burst reactors based on reactivity temperature coefficient[J]. Atomic Energy Science and Technology, 2017, 51(5): 798-802 doi: 10.7538/yzk.2017.51.05.0798 [7] Fiorina C, Aufiero M, Pelloni S, et al. A time-dependent solver for coupled neutron-transport thermal-mechanics calculations and simulation of a Godiva prompt-critical burst[C]//Proceedings of the 2014 22nd International Conference on Nuclear Engineering. 2014. [8] 郭树伟, 陈珍平, 江新标, 等. 金属核燃料快中子脉冲堆核-热-力耦合计算方法研究[J]. 核动力工程, 2022, 43(4):31-37Guo Shuwei, Chen Zhenping, Jiang Xinbiao, et al. Study on neutronic/thermal-mechanical coupling calculation method for fast-neutron pulse reactor with metallic nuclear fuel[J]. Nuclear Power Engineering, 2022, 43(4): 31-37 [9] Wang Lipeng, Guo Shuwei, Hu Tianliang, et al. Transient simulation and parameter sensitivity analysis of Godiva experiment based on MOOSE platform[J]. Energies, 2023, 16(18): 6575. doi: 10.3390/en16186575 [10] Blanco J A. Neutronic, thermohydraulic and thermomechanical coupling for the modeling of criticality accidents in nuclear systems[D]. Grenoble: Université Grenoble Alpes, 2020. [11] 杨波. 离散纵标法求解含有各向异性散射的输运方程[D]. 绵阳: 中国工程物理研究院, 2005Yang Bo. Solution of transport equations with anisotropic scattering using the discrete ordinates method[D]. Mianyang: China Academy of Engineering Physics, 2005 [12] Jasak H, Jemcov A, Tuković Z. OpenFOAM: a C++ library for complex physics simulations[C]//Proceedings of the International Workshop on Coupled Methods in Numerical Dynamics. 2007. [13] Eymard R, Gallouët T, Herbin R. Finite volume methods[J]. Handbook of Numerical Analysis, 2000, 7: 713-1018. [14] Peterson R, Newby G. Lady Godiva: an unreflected uranium-235 critical assembly[R]. Los Alamos: Los Alamos National Lab, 1953. [15] Geuzaine C, Remacle J F. Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities[J]. International Journal for Numerical Methods in Engineering, 2009, 79(11): 1309-1331. doi: 10.1002/nme.2579 [16] Wimett T, Engle L, Graves G, et al. Time behavior of Godiva through prompt critical[R]. Los Alamos: Los Alamos Scientific Lab, 1956. [17] 张驰, 周琦, 朱庆福, 等. 金属核燃料系统瞬态特性分析研究[J]. 原子能科学技术, 2016, 50(12):2170-2174 doi: 10.7538/yzk.2016.50.12.2170Zhang Chi, Zhou Qi, Zhu Qingfu, et al. Transient characteristic analysis of nuclear metallic fuel system[J]. Atomic Energy Science and Technology, 2016, 50(12): 2170-2174 doi: 10.7538/yzk.2016.50.12.2170 -