Influence of isolation element in trigger circuit on synchronization of multiple switches
-
摘要: 对于数十个基本放电支路并联同步放电的直线变压器驱动源(LTD)模块,触发隔离元件直接影响高功率气体开关的触发导通同步性,进而对整个LTD模块输出性能产生影响。为了优化选择触发隔离元件类型及参数,针对电阻及电感两种隔离方式进行了计算分析和实验对比。结果表明,电感隔离效果优于电阻隔离,同时对于不同的隔离电感参数,5 μH隔离电感下LTD模块输出结果相对最好。Abstract: Multiple switches need to be triggered in parallel in a linear transformer driver (LTD) cavity where tens of bricks connect in parallel and switch-to-switch isolation is necessary. The lack of transient isolation will result in poor tolerance to switch jitter which manifests as increased probability of late-firing switches and further affect the output performance of LTD cavity. To optimize the type and parameter of the isolation element, the resistive and inductive isolation modes were compared in circuit simulation and experiments. The results show that the inductive isolation has better effect than resistive isolation both for synchronization of switches and the load voltage of LTD cavity. Among the inductors with different inductance, the 5 μH inductor has the best output data.
-
Key words:
- linear transformer driver /
- gas spark switch /
- trigger /
- jitter /
- output voltage
-
表 1 不同触发隔离电阻和电感下未导通开关触发极电压脉冲幅值和上升沿
Table 1. Voltage amplitude and rise time on trigger electrode of unclosed switch for different isolation inductance or resistance
resistance/Ω inductance/μH voltage amplitude/kV rise time/ns two switches keep opening one switch is closed two switches keep opening one switch is closed 150 176.0 89.5 25.5 28.8 300 176.0 123.5 27.2 28.0 450 175.7 138.9 29.8 31.5 600 175.2 146.0 32.6 32.6 1 174.5 108.8 12.9 8.8 3 213.6 146.8 16.6 13.3 5 236.6 176.9 19.8 16.7 7 251.4 198.5 22.0 19.4 表 2 不同隔离元件类型及参数下气体开关及LTD模块工作性能对比
Table 2. Comparison of gas switches and LTD cavity performances for different isolation element
resistance/Ω inductance/μH work ratio of switch/% switch jitter/ns range of time delay/ns load voltage of LTD cavity/kV 150 70 2.1 7.6 81.8 65 2.7 9.0 81.5 60 3.9 14.2 81.0 55 9.0 43.7 77.8 300 70 1.9 6.8 81.5 65 2.8 10.4 81.1 60 3.8 14.0 80.6 55 9.0 38.6 78.7 550 70 1.8 6.0 81.8 65 2.0 6.6 81.6 60 3.3 13.2 80.7 55 8.0 33.4 79.4 3 70 1.7 5.8 81.9 65 1.8 5.6 81.8 60 2.1 7.2 81.5 55 3.9 16.4 80.6 5 70 1.8 5.6 81.9 65 1.8 5.8 81.8 60 1.9 6.8 81.4 55 2.5 8.6 81.2 7 70 1.8 5.8 81.8 65 1.9 5.4 81.6 60 2.0 7.2 81.3 55 3.2 14.8 80.7 -
[1] Kim A A, Kovalchuk B M, Bastrikov A N, et al. 100 ns current rise time LTD stage[C]//Proceedings of 13th IEEE International Pulsed power Conference. 2001: 1491-1494. [2] Rogowski S T, Fowler W E, Mazarakis M, et al. Operation and performance of the first high current LTD at Sandia National Laboratories[C]//Proceedings of 15th IEEE International Pulsed Power Conference. 2005: 155-157. [3] 陈林, 王勐, 邹文康, 等. 中物院快脉冲直线型变压器驱动源技术研究进展[J]. 高电压技术, 2015, 41(6):1798-1806Chen Lin, Wang Meng, Zou Wenkang, et al. Recent advances in fast linear transformer driver in CAEP[J]. High Voltage Engineering, 2015, 41(6): 1798-1806 [4] 邓建军, 王勐, 谢卫平, 等. 面向Z箍缩驱动聚变能源需求的超高功率重复频率驱动器技术[J]. 强激光与粒子束, 2014, 26:100201 doi: 10.11884/HPLPB201426.100201Deng Jianjun, Wang Meng, Xie Weiping, et al. Super-power repetitive Z-pinch driver for fusion-fission reactor[J]. High Power Laser and Particle Beams, 2014, 26: 100201 doi: 10.11884/HPLPB201426.100201 [5] 向飞, 谭杰, 张永辉, 等. 重频直线变压器长脉冲高功率微波驱动源研究[J]. 物理学报, 2010, 59(7):4620-4625 doi: 10.7498/aps.59.4620Xiang Fei, Tan Jie, Zhang Yonghui, et al. Linear transformer driven long pulse high power generator with higher repetition rate[J]. Acta Physica Sinica, 2010, 59(7): 4620-4625 doi: 10.7498/aps.59.4620 [6] Leckbee J J, Maenchen J E, Johnson D L, et al. Design, simulation, and fault analysis of a 6.5-MV LTD for flash X-ray radiography[J]. IEEE Transactions on Plasma Science, 2006, 34(5): 1888-1899. doi: 10.1109/TPS.2006.879553 [7] 陈林, 周良骥, 蒋吉昊, 等. 基于方波LTD的3 MV闪光照相驱动器设计[J]. 强激光与粒子束, 2017, 29:115001 doi: 10.11884/HPLPB201729.170189Chen Lin, Zhou Liangji, Jiang Jihao, et al. Design of 3 MV flash radiographic driver based on square pulse LTD[J]. High Power Laser and Particle Beams, 2017, 29: 115001 doi: 10.11884/HPLPB201729.170189 [8] 江伟华. 高重复频率脉冲功率技术及其应用: (7)主要技术问题和未来发展趋势[J]. 强激光与粒子束, 2015, 27:010201 doi: 10.11884/HPLPB201527.010201Jiang Weihua. Repetition rate pulsed power technology and its applications: (vii) Major challenges and future trends[J]. High Power Laser and Particle Beams, 2015, 27: 010201 doi: 10.11884/HPLPB201527.010201 [9] 陈林, 王勐, 谢卫平, 等. Z箍缩直线变压器驱动源原型模块设计[J]. 强激光与粒子束, 2014, 26:095007 doi: 10.11884/HPLPB201426.095007Chen Lin, Wang Meng, Xie Weiping, et al. Design of the linear transformer driver stage prototype for Z-pinch driver[J]. High Power Laser and Particle Beams, 2014, 26: 095007 doi: 10.11884/HPLPB201426.095007 [10] Woodworth J R, Fowler W E, Stoltzfus B S, et al. Compact 810 kA linear transformer driver cavity[J]. Physical Review Special Topics-Accelerators and Beams, 2011, 14: 040401. doi: 10.1103/PhysRevSTAB.14.040401 [11] Kim A A, Mazarakis M G, Sinebryukhov V A, et al. Development and tests of fast 1-MA linear transformer driver stages[J]. Physical Review Special Topics-Accelerators and Beams, 2009, 12: 050402. doi: 10.1103/PhysRevSTAB.12.050402 [12] Zhou Lin, Li Zhenghong, Wang Zhen, et al. Design of a 5-MA 100-ns linear-transformer-driver accelerator for wire array Z-pinch experiments[J]. Physical Review Accelerators and Beams, 2016, 19: 030401. doi: 10.1103/PhysRevAccelBeams.19.030401 [13] Douglass J D, Hutsel B T, Leckbee J J, et al. 100 GW linear transformer driver cavity: Design, simulations, and performance[J]. Physical Review Accelerators and Beams, 2018, 21: 120401. doi: 10.1103/PhysRevAccelBeams.21.120401 [14] 李鹏辉. FLTD模块中触发隔离方式与充电隔离方式研究[C]//第七届全国脉冲功率会议暨第八届全国特种电源学术交流会论文集. 2021Li Penghui. Research of isolation mode in triggering and charging of FLTD[C]//Proceedings of 7th Pulsed Power Cconference. 2021 [15] 刘鹏, 魏浩, 孙凤举, 等. 快放电直线变压器型驱动源用场畸变型低电感气体火花开关[J]. 高电压技术, 2011, 37(10):2554-2560Liu Peng, Wei Hao, Sun Fengju, et al. Low inductance field-distortion gas spark switches for fast linear transformer drivers[J]. High Voltage Engineering, 2011, 37(10): 2554-2560 -