留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子液体离子源束流粒子模拟及束流调控

黄成金 林建辉 张红平 屈曦 周沧涛 李牧

黄成金, 林建辉, 张红平, 等. 离子液体离子源束流粒子模拟及束流调控[J]. 强激光与粒子束, 2025, 37: 019001. doi: 10.11884/HPLPB202537.240373
引用本文: 黄成金, 林建辉, 张红平, 等. 离子液体离子源束流粒子模拟及束流调控[J]. 强激光与粒子束, 2025, 37: 019001. doi: 10.11884/HPLPB202537.240373
Huang Chengjin, Lin Jianhui, Zhang Hongping, et al. Particle simulation and control for beam of ionic liquid ion source[J]. High Power Laser and Particle Beams, 2025, 37: 019001. doi: 10.11884/HPLPB202537.240373
Citation: Huang Chengjin, Lin Jianhui, Zhang Hongping, et al. Particle simulation and control for beam of ionic liquid ion source[J]. High Power Laser and Particle Beams, 2025, 37: 019001. doi: 10.11884/HPLPB202537.240373

离子液体离子源束流粒子模拟及束流调控

doi: 10.11884/HPLPB202537.240373
基金项目: 国家自然科学基金项目(12302356);中国博士后科学基金项目(2023M742394);深圳技术大学产业化研发项目(20221063010033)
详细信息
    作者简介:

    黄成金,huangchengjin@sztu.edu.cn

    通讯作者:

    周沧涛,zcangtao@sztu.edu.cn

    李 牧,limu@sztu.edu.cn

  • 中图分类号: O463+.2

Particle simulation and control for beam of ionic liquid ion source

  • 摘要: 离子液体离子源可以提供种类丰富的大质量离子,在离子推力器等方面有重要应用。为了获得离子液体离子源束流品质参数并有效调控束流品质,使用粒子方法模拟了离子液体离子源束流加速过程,研究了束电流、加速电压和发射锥-引出电极轴向间距等三个常用操作条件对束流发射度和Twiss参数的影响。研究表明:束流的归一化发射度随束电流的降低、发射锥-引出电极轴向间距的减小和加速电压的升高而降低。加速过程会造成动能分布展宽,束电流和加速电压对加速效率没有明显影响,而增加发射锥-引出电极轴向间距可以提高加速效率。进一步以加速过程模拟得到的束流参数集为输入,模拟了厘米级空间尺度束流的调控。研究表明通过一组三电极静电透镜,可以有效调控束流的发散、速度分布和比冲性能,而不增加对现有离子液体电推力器电源配置的要求。
  • 图  1  研究系统示意图

    Figure  1.  Sketch diagram of simulated system

    图  2  束流径向发射度及Twiss参数

    Figure  2.  Beam emittance and Twiss parameters in X-direction

    图  3  离子束流的轨迹特征(70 ns至100 ns内以5 ns间隔叠加后平均)

    Figure  3.  Trajectory characteristics of ion beam (averaged from 70 ns to 100 ns with the interval of 5 ns)

    图  4  离子束流的能量特征(70 ns至100 ns内以5 ns间隔叠加后平均)

    Figure  4.  Energy characteristics of ion beam (averaged from 70 ns to 100 ns with the interval of 5 ns)

    图  5  不同时刻的归一化发射度

    Figure  5.  Transient normalized emittance

    图  6  不同时刻的加速效率

    Figure  6.  Transient acceleration efficiency

    图  7  不同${w_1}$下的离子轨迹

    Figure  7.  Ion trajectories with different ${w_1}$

    图  8  动能分布(${w_1} = {\text{300 μm}}$)

    Figure  8.  Kinetic energy distribution (${w_1} = {\text{300 μm}}$)

    图  9  不同${w_1}$下的归一化发射度和加速效率

    Figure  9.  Normalized emittance and acceleration efficiency with different ${w_1}$

    图  10  未调控束流的模拟(${U_1} = {U_2} = 0{\text{ V}}$)

    Figure  10.  Uncontrolled beam (${U_1} = {U_2} = 0{\text{ V}}$)

    图  11  Einzel单透镜模式下不同${U_1}$的离子轨迹(${U_0} = 1\;000{\text{ V}}$, ${U_2} = 0{\text{ V}}$)

    Figure  11.  Ion trajectories with different ${U_1}$ in Einzel lens mode (${U_0} = 1\;000{\text{ V}}$, ${U_2} = 0{\text{ V}}$)

    图  12  Einzel单透镜模式下不同${U_1}$离子束流的调控效果(${U_0} = 1\;000{\text{ V}}$, ${U_2} = 0{\text{ V}}$)

    Figure  12.  Beam optimization with different ${U_1}$ in Einzel lens mode (${U_0} = 1\;000{\text{ V}}$, ${U_2} = 0{\text{ V}}$)

    图  13  推力面右侧单体离子的速度重分配($ \; \mu $代表数学期望, PDF为概率密度函数)

    Figure  13.  Regulation of monomer ion velocity in the free space on the right of the thrust face ($ \; \mu $ is mathematical expectation,PDF is probability density function)

    图  14  Einzel单透镜模式下不同${U_1}$的比冲(${U_0} = 1\;000{\text{ V}}$, ${U_2} = 0{\text{ V}}$)

    Figure  14.  Specific impulse with different ${U_1}$ in Einzel lens mode (${U_0} = 1\;000{\text{ V}}$, ${U_2} = 0{\text{ V}}$)

    图  15  浸没透镜模式下不同${U_2}$的调控效果(${U_0} = {U_1} = 1\;000{\text{ V}}$

    Figure  15.  Beam optimization with different ${U_2}$ in immersion lens mode (${U_0} = {U_1} = 1\;000{\text{ V}}$)

    表  1  离子液体离子源参数

    Table  1.   Parameters of ionic liquid ion source[6,8]

    beam current,$ I\mathrm{_b} $/nA acceleration voltage,$ U_0/\mathrm{V} $ composition radius of extraction hole,$ {R_{\text{e}}} $/mm thickness of extraction/mm
    $ 0.71U_0/\mathrm{V}-460 $ 10001300 40% monomers+60% dimers 0.15 0.15
    下载: 导出CSV

    表  2  束流参数表

    Table  2.   Summary of beam parameters

    ${w_1}{\text{/μm}}$ ${I_{\mathrm{b}}}{\text{/nA}}$ ${U_0}{\text{/V}}$ emittance
    ${\varepsilon _{1 {\text{-}} {\rm{rms}}}}{\text{/μm}}$
    Twiss
    $ \alpha $/rad
    Twiss
    $ \; \beta $/mm
    normalized emittance
    $ {\varepsilon _{\rm{n}}}/({\rm{mrad}} \cdot {\rm{mm}}) $
    mean
    energy/eV
    energy standard
    deviation/eV
    100 250 1000 4.173 −3.260 1.526 48.52 995.3(99.53%U0) 5.14(5.14‰U0)
    100 321 1100 4.214 −3.261 1.527 49.03 1094.7(99.52%U0) 5.67(5.15‰U0)
    100 392 1200 4.235 −3.261 1.526 49.26 1194.2(99.52%U0) 6.26(5.22‰U0)
    100 463 1300 4.262 −3.261 1.526 49.58 1293.7(99.52%U0) 6.78(5.22‰U0)
    100 463 700 5.128 −3.260 1.527 59.64 696.56(99.51%U0) 3.53(5.04‰U0)
    100 463 1000 4.517 −3.260 1.526 52.53 995.08(99.51%U0) 5.13(5.13‰U0)
    100 463 1600 4.133 −3.260 1.526 48.07 1592.3(99.52%U0) 8.55(5.34‰U0)
    150 250 1000 4.107 −3.643 1.874 58.61 997.3(99.73%U0) 2.89(2.89‰U0)
    200 250 1000 4.042 −4.026 2.261 69.56 998.3(99.83%U0) 1.83(1.83‰U0)
    250 250 1000 3.996 −4.409 2.687 81.69 998.8(99.88%U0) 1.31(1.31‰U0)
    300 250 1000 3.950 −4.793 3.153 94.68 999.1(99.91%U0) 1.10(1.10‰U0)
    下载: 导出CSV
  • [1] Gamero-Castaño M, Hruby V. Electrospray as a source of nanoparticles for efficient colloid thrusters[J]. Journal of Propulsion and Power, 2001, 17(5): 977-987. doi: 10.2514/2.5858
    [2] Romero-Sanz I, Bocanegra R, de La Mora J F, et al. Source of heavy molecular ions based on Taylor cones of ionic liquids operating in the pure ion evaporation regime[J]. Journal of Applied Physics, 2003, 94(5): 3599-3605. doi: 10.1063/1.1598281
    [3] Höflich K, Hobler G, Allen F I, et al. Roadmap for focused ion beam technologies[J]. Applied Physics Reviews, 2023, 10: 041311. doi: 10.1063/5.0162597
    [4] Lozano P C. Design and microstructuring of materials to boost spacecraft ion propulsion[J]. Nature Reviews Materials, 2024, 9(11): 757-758. doi: 10.1038/s41578-024-00664-3
    [5] Huang Chengjin, Li Jianling, Li Mu. Experimental characterization of the electrospray propulsive performance for ionic liquid propellants [EMIm][DCA] and [BMIm][DCA][J]. Fuel, 2023, 336: 126822.
    [6] Huang Chengjin, Li Jianling, Li Mu. Performance measurement and evaluation of an ionic liquid electrospray thruster[J]. Chinese Journal of Aeronautics, 2023, 36(3): 1-15. doi: 10.1016/j.cja.2021.10.030
    [7] Huang Chengjin, Li Jianling, Li Mu, et al. Emission performance of ionic liquid electrospray thruster for micropropulsion[J]. Journal of Propulsion and Power, 2022, 38(2): 212-220. doi: 10.2514/1.B37878
    [8] Huang Chengjin, Li Jianling, Li Mu, et al. Experimental investigation on current modes of ionic liquid electrospray from a coned porous emitter[J]. Acta Astronautica, 2021, 183: 286-299. doi: 10.1016/j.actaastro.2021.03.014
    [9] Chen Chong, Chen Maolin, Fan Wei, et al. Effects of non-uniform operation of emission sites on characteristics of a porous electrospray thruster[J]. Acta Astronautica, 2021, 178: 192-202. doi: 10.1016/j.actaastro.2020.09.002
    [10] Liu Xinyu, Kang Xiaoming, Deng Hanwen, et al. Energy properties and spatial plume profile of ionic liquid ion sources based on an array of porous metal strips[J]. Plasma Science and Technology, 2021, 23: 125502. doi: 10.1088/2058-6272/ac23bd
    [11] Guo Yuntao, Sun Wei, Sun Zhenning, et al. Direct thrust test and asymmetric performance of porous ionic liquid electrospray thruster[J]. Chinese Journal of Aeronautics, 2023, 36(4): 120-133. doi: 10.1016/j.cja.2022.09.007
    [12] Yang Cheng, Lu Jiawei, Wu Xiangbei, et al. Axial emission characteristics of an ionic liquid electrospray thruster with a circular emitter[J]. Chinese Journal of Aeronautics, 2025, 38: 103207. doi: 10.1016/j.cja.2024.08.038
    [13] MacArthur J, Colicci V, Lozano P. Monodisperse porous emitter materials for ion electrospray propulsion[J]. Journal of Propulsion and Power, 2024, 40(6): 859-868. doi: 10.2514/1.B39375
    [14] 吕建钦. 带电粒子束光学[M]. 北京: 高等教育出版社, 2004

    Lv Jianqin. Optics of charged particle beams[M]. Beijing: Higher Education Press, 2004
    [15] Collins A L, Wright P L, Uchizono N M, et al. High angle mass flux of an electrospray plume[J]. Journal of Electric Propulsion, 2022, 1(1): 32. doi: 10.1007/s44205-022-00031-w
    [16] 孙安邦, 毛根旺, 陈茂林, 等. 离子推力器羽流特性的粒子模拟[J]. 强激光与粒子束, 2010, 22(2):401-405 doi: 10.3788/HPLPB20102202.0401

    Sun Anbang, Mao Genwang, Chen Maolin, et al. Particle simulation of ion thruster plume characteristics[J]. High Power Laser and Particle Beams, 2010, 22(2): 401-405 doi: 10.3788/HPLPB20102202.0401
    [17] Zhang Baiyi, Cai Guobiao, He Bijiao, et al. Plume neutralization of an ionic liquid electrospray thruster: better insights from particle-in-cell modelling[J]. Plasma Sources Science and Technology, 2021, 30: 125009. doi: 10.1088/1361-6595/ac3e7f
    [18] Asher J S, Wang J. Three-dimensional particle-in-cell simulations of bipolar ionic electrospray thruster plume[J]. Journal of Propulsion and Power, 2022, 38(4): 573-580. doi: 10.2514/1.B38610
    [19] Du Zening, Wu Zhiwen, Li Jin, et al. Study on the plume self-neutralization of ionic liquid electrospray thruster based on median potential[J]. Plasma Sources Science and Technology, 2024, 33: 055016. doi: 10.1088/1361-6595/ad4ac3
    [20] Gallud X, Lozano P C. The emission properties, structure and stability of ionic liquid menisci undergoing electrically assisted ion evaporation[J]. Journal of Fluid Mechanics, 2022, 933: A43. doi: 10.1017/jfm.2021.988
    [21] Romero-Sanz I, de La Mora J F. Energy distribution and spatial structure of electrosprays of ionic liquids in vacuo[J]. Journal of Applied Physics, 2004, 95(4): 2123-2129. doi: 10.1063/1.1639947
    [22] Lund S M, Kikuchi T, Davidson R C. Generation of initial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity[J]. Physical Review Special Topics - Accelerators and Beams, 2009, 12: 114801. doi: 10.1103/PhysRevSTAB.12.114801
    [23] Humphries S Jr. Charged particle beams[M]. New York: Wiley, 1990.
    [24] Lozano P, Martínez-Sánchez M. Ionic liquid ion sources: characterization of externally wetted emitters[J]. Journal of Colloid and Interface Science, 2005, 282(2): 415-421. doi: 10.1016/j.jcis.2004.08.132
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  59
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-23
  • 修回日期:  2024-12-06
  • 录用日期:  2024-12-06
  • 网络出版日期:  2024-12-18
  • 刊出日期:  2025-12-13

目录

    /

    返回文章
    返回