A vacuum-sealed X-band repetitively pulsed high power microwave system
-
摘要: 传统上通常采用外接真空泵组来获取和维持高功率微波系统的真空状态,但这会显著增加系统的体积和重量,限制其实际应用场景。为了实现高功率微波系统的轻小型化,提升其实用性,针对X波段重频高功率微波系统,设计研制了一种真空封装装置。在脉冲传输线-二极管界面以及微波天线喇叭口,采用了陶瓷-金属钎焊技术;在系统的其他接口处采用了刀口密封技术,实现了高功率微波产生、传输及发射腔体内部的真空封装。借鉴真空电子领域中的材料表面清洗、烘烤排气等真空获取手段,系统可以在非工作状态下维持10−7 Pa数量级的气压接近100 h。通过在二极管外筒和微波天线喇叭上安装非蒸散型吸气剂泵,可有效捕集系统加电工作时腔内释放的气体,实现动态真空维持。实验结果表明,该系统能够以10~30 Hz的重频稳定运行10 000炮次以上。Abstract: Traditionally, bulky external vacuum pumps are used to obtain and maintain vacuum state of the high power microwave system, which significantly increase the size and weight of the system, and limit its practical application. To achieve lightweight and miniaturization of the high power microwave system and improve its practicality, a vacuum-sealed device is designed for X-band repetitively pulsed high power microwave system. Ceramic-metal brazing technology is used at the interface between the pulse transmission line and diode, as well as between the horn mouth of the microwave antenna and the air, while knife-edge sealing technology is used at other interfaces of the system, thus to achieve vacuum packaging inside the high power microwave generation, transmission, and emission cavity. By using methods of vacuum acquisition in the field of vacuum electronics, such as material surface cleaning and baking, the system can maintain a pressure of the order of 10−7 Pa for nearly 100 h in non-operating conditions. The non-evaporable getter pumps are installed on the cylinder of the diode and the horn of the microwave antenna, which can effectively capture the gas released in the cavity when the system is powered up and maintain vacuum dynamically. The experimental results show that the system can run more than 10 000 shots stably at the pulse repetition frequency of 10−30 Hz.
-
表 1 0.4 m3/s规格吸气剂泵的吸气特性
Table 1. Properties of 0.4 m3/s NEG pump
gas pumping speed/(m3·s−1) pumping amount/(Pa·m3) H2 0.4 266.644 CO 0.21 133.322 表 2 静态真空度随时间变化数据记录表
Table 2. Data recording table of static vacuum degree variation over time
No. duration after sealing off/h vacuum degree/Pa rising rate of pressure/(Pa·h−1) 0 0 2.0×10−7 1 3.05 3.3×10−7 4.26×10−8 2 4.18 3.5×10−7 1.76×10−8 3 6.00 3.8×10−7 1.65×10−8 4 15.13 5.1×10−7 1.42×10−8 5 18.00 5.5×10−7 1.40×10−8 6 21.00 5.8×10−7 1.00×10−8 7 25.00 6.3×10−7 1.25×10−8 8 39.88 7.4×10−7 7.39×10−9 9 50.50 8.0×10−7 5.65×10−9 10 64.05 8.7×10−7 5.17×10−9 11 88.12 9.7×10−7 4.16×10−9 12 98.75 9.9×10−7 1.88×10−9 13 122.85 1.0×10−6 4.15×10−10 -
[1] Friedman M, Fernsler R, Slinker S, et al. Efficient conversion of the energy of intense relativistic electron beams into rf waves[J]. Physical Review Letters, 1995, 75(6): 1214-1217. doi: 10.1103/PhysRevLett.75.1214 [2] Eltchaninov A A, Korovin S D, Mesyats G A, et al. Review of studies of superradiative microwave generation in X band and Ka band relativistic BWOs[J]. IEEE Transactions on Plasma Science, 2004, 32(3): 1093-1099. doi: 10.1109/TPS.2004.828802 [3] 张余川, 孙钧, 邵浩, 等. 抑制表面场增强提高相对论返波管功率容量[J]. 强激光与粒子束, 2016, 28:033019 doi: 10.11884/HPLPB201628.033019Zhang Yuchuan, Sun Jun, Shao Hao, et al. Suppression of surface field enhancement to improve power capacity of RBWO[J]. High Power Laser and Particle Beams, 2016, 28: 033019 doi: 10.11884/HPLPB201628.033019 [4] Grishin D M, Gubanov V P, Korovin S D, et al. High-power subnanosecond 38-GHz microwave pulses generated at a repetition rate of up to 3.5kHz[J]. Technical Physics Letters, 2002, 28: 806-809. doi: 10.1134/1.1519013 [5] Zhang Jun, Jin Zhenxing, Yang Jianhua, et al. Recent advance in long-pulse HPM sources with repetitive operation in S-, C-, and X-bands[J]. IEEE Transactions on Plasma Science, 2011, 39(6): 1438-1445. doi: 10.1109/TPS.2011.2129536 [6] 曹亦兵, 孙钧, 宋志敏, 等. C波段长脉冲相对论返波管设计与实验[J]. 强激光与粒子束, 2018, 30:053004 doi: 10.11884/HPLPB201830.170470Cao Yibing, Sun Jun, Song Zhimin, et al. Design and experiment of long-pulse C-band relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2018, 30: 053004 doi: 10.11884/HPLPB201830.170470 [7] 夏文锋, 张冬晓, 刘启晨, 等. 一种新型高功率轻小型化脉冲驱动源研制[J]. 现代应用物理, 2023, 14:030506Xia Wenfeng, Zhang Dongxiao, Liu Qichen, et al. A novel lightweight and miniaturized high power pulse drive source[J]. Modern Applied Physics, 2023, 14: 030506 [8] 伍友成, 冯传均, 付佳斌, 等. 基于PFN-Marx技术的紧凑型重频脉冲功率源[J]. 强激光与粒子束, 2024, 36:055019 doi: 10.11884/HPLPB202436.230354Wu Youcheng, Feng Chuanjun, Fu Jiabin, et al. A compact PFN-Marx repetitive pulsed power source[J]. High Power Laser and Particle Beams, 2024, 36: 055019 doi: 10.11884/HPLPB202436.230354 [9] 黎深根, 储开荣, 李冬凤, 等. 应用于高功率微波的速调管和正交场器件[J]. 现代应用物理, 2023, 14:030503Li Shengen, Chu Kairong, Li Dongfeng, et al. Klystron and crossed-field device for high power microwave applications[J]. Modern Applied Physics, 2023, 14: 030503 [10] 赵亮, 苏建仓, 李锐. 数十厘米长间隙真空绝缘研究进展[J]. 现代应用物理, 2023, 14:040104Zhao Liang, Su Jiancang, Li Rui. Research progress of vacuum insulation with tens of centimeters of long gaps[J]. Modern Applied Physics, 2023, 14: 040104 [11] 张亦弛, 蔡军, 冯进军. 高功率微波源的硬管化技术分析[J]. 真空电子技术, 2016, 29(6):20-26,71Zhang Yichi, Cai Jun, Feng Jinjun. Hard tube technology analysis of high power microwave sources[J]. Vacuum Electronics, 2016, 29(6): 20-26,71 [12] 王日品, 荀涛, 令钧溥, 等. 硬管保真空微波源脉冲放气的特性研究[C]//第八届全国脉冲功率技术学术交流会论文集. 2023: 817-824Wang Ripin, Xun Tao, Ling Junpu, et al. Study on the characteristics of pulse deflation of hard tube vacuum microwave source[C]//Proceedings of the 8th National Pulse Power Conference. 2023: 817-824 [13] Parson J M, Lynn C F, Scott M C, et al. A frequency stable vacuum-sealed tube high-power microwave vircator operated at 500Hz[J]. IEEE Electron Device Letters, 2015, 36(5): 508-510. doi: 10.1109/LED.2015.2408216 [14] Xun Tao, Fan Yuwei, Yang Hanwu, et al. A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source[J]. Journal of Applied Physics, 2017, 121: 234502. doi: 10.1063/1.4986632 [15] 荀涛, 王日品, 杨汉武, 等. 重频吉瓦高功率微波源硬管化技术研究进展[C]//第八届全国脉冲功率技术学术交流会论文集. 2023: 792-798Xun Tao, Wang Ripin, Yang Hanwu, et al. Research progress on hard tube technology of high-frequency gigawatt high-power microwave source[C]//Proceedings of the 8th National Pulse Power Conference. 2023: 817-824 [16] 肖仁珍. 相对论返波管研究进展[J]. 现代应用物理, 2022, 13:020101 doi: 10.12061/j.issn.2095-6223.2022.020101Xiao Renzhen. Research progress of relativistic backward wave oscillator[J]. Modern Applied Physics, 2022, 13: 020101 doi: 10.12061/j.issn.2095-6223.2022.020101 [17] 王利民. 固态直线变压器驱动源的探索研究[D]. 成都: 西南交通大学, 2022Wang Limin. Study on solid-state linear transformer driver[D]. Chengdu: Southwest Jiaotong University, 2022 [18] 徐成海, 陆国柱, 谈治信, 等. 真空设备选型与采购指南[M]. 北京: 化学工业出版社, 2013Xu Chenghai, Lu Guozhu, Tan Zhixin, et al. Selection and procurement guide for vacuum equipment[M]. Beijing: Chemical Industry Press, 2013 [19] 刘玉魁. 真空工程设计[M]. 北京: 化学工业出版社, 2016Liu Yukui. Design of vacuum engineering[M]. Beijing: Chemical Industry Press, 2016 -