留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种非接触式GW级高功率微波在线耦合测量结构设计与测试方法

吴少彤 苏建仓 李锐 程杰 胡祥刚 李梅 徐秀栋

吴少彤, 苏建仓, 李锐, 等. 一种非接触式GW级高功率微波在线耦合测量结构设计与测试方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240386
引用本文: 吴少彤, 苏建仓, 李锐, 等. 一种非接触式GW级高功率微波在线耦合测量结构设计与测试方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240386
Wu Shaotong, Su Jiancang, Li Rui, et al. Design and testing method of a non-contact GW-level high-power microwave online coupling measurement structure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240386
Citation: Wu Shaotong, Su Jiancang, Li Rui, et al. Design and testing method of a non-contact GW-level high-power microwave online coupling measurement structure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240386

一种非接触式GW级高功率微波在线耦合测量结构设计与测试方法

doi: 10.11884/HPLPB202537.240386
详细信息
    作者简介:

    吴少彤,wushaotong@nint.ac.cn

  • 中图分类号: TN82

Design and testing method of a non-contact GW-level high-power microwave online coupling measurement structure

  • 摘要: 高功率微波(HPM)系统集成过程中,微波源与传输发射分系统的对接状态直接影响系统性能,不良的对接状态可能引发射频击穿,导致系统输出功率降低。因此,诊断系统的对接状态具有重要工程价值。为此,开展了非接触式高功率微波传输技术研究,并针对采用圆锥喇叭作为馈源的Ku波段GW级HPM系统,提出了一种馈源喇叭注入功率测量技术。基于仿真设计,完成该测量技术的关键组件研制,并开展了小信号测试和功率容量考核试验。试验结果表明,在(15±0.15) GHz范围内,该测量组件的反射系数小于−26 dB,耦合系数为(−0.31±0.07) dB,功率容量超过900 MW。实验和仿真结果证明,提出的测量技术具有耦合系数稳定、测试误差小等性能,能够有效地测量HPM源注入馈源喇叭的微波功率,并诊断HPM系统的对接状态。
  • 图  1  原理构型示意图

    Figure  1.  Principle configuration diagram

    图  2  耦合测量组件结构示意图

    Figure  2.  Structure diagram of coupling measurement subassembly

    图  3  参数化仿真模型

    Figure  3.  Parametric simulation model

    图  4  S参数仿真结果

    Figure  4.  Simulation S-parameter results

    图  5  耦合测量组件电场分布

    Figure  5.  Coupling measurement subassembly electric field distribution

    图  6  耦合测量组件照片

    Figure  6.  Coupling measurement subassembly photo

    图  7  小信号试验

    Figure  7.  Small signal experiment

    图  8  S参数测试结果

    Figure  8.  S-parameter test results

    图  9  试验波形图

    Figure  9.  Experimental waveform diagram

    图  10  试验原理图

    Figure  10.  Experimental schematic diagram

    图  11  HPM测试波形@50 Hz 1000-pulse operation

    Figure  11.  Test waveform under HPM@50 Hz 1000-pulse operation

    图  12  典型波形对比@50 Hz single-pulse operation

    Figure  12.  Typical waveform contrast @ 50 Hz single-pulse operation

    图  13  连接面状态照片

    Figure  13.  Status photo of connection surface

    表  1  参数设置

    Table  1.   Parameter setting

    Rfeed/mm Rcouple/mm L1/mm L2/mm L3/mm H1/mm Dgap/mm
    15 15 67.43 16.8 60 10.65 5.12
    下载: 导出CSV

    表  2  试验数据

    Table  2.   Experimental data

    Num. Microwave source Operating Mode P1/dBm P2/dBm S0/dB Sc/dB
    1 50 Hz 1000-pulse operation 120.06 119.31 0.45 0.30
    2 120.21 119.48 0.45 0.28
    3 120.20 119.49 0.45 0.26
    4 120.24 119.48 0.45 0.31
    5 120.20 119.48 0.45 0.27
    下载: 导出CSV
  • [1] 戴大富. 高功率微波的发展与现状[J]. 真空电子技术, 2004(5):18-24 doi: 10.3969/j.issn.1002-8935.2004.05.005

    Dai Dafu. The present status and future developments of high power microwave[J]. Vacuum Electronics, 2004(5): 18-24 doi: 10.3969/j.issn.1002-8935.2004.05.005
    [2] 宋玮, 邵浩, 张治强, 等. 射频击穿等离子体对高功率微波传输特性的影响[J]. 物理学报, 2014, 63:064101 doi: 10.7498/aps.63.064101

    Song Wei, Shao Hao, Zhang Zhiqiang, et al. High power microwave propagation properties in radio frequency breakdown plasma[J]. Acta Physica Sinica, 2014, 63: 064101 doi: 10.7498/aps.63.064101
    [3] 吕庆立, 施锦文, 彭健. Ka频段大功率波导旋转关节: CN102055047A[P]. 2011-05-11

    Lv Qingli, Shi Jinwen, Peng Jian. Ka frequency range high-power waveguide rotary joint: CN102055047A[P]. 2011-05-11
    [4] 陈翔, 孙冬全, 李军, 等. 一种宽带非接触式圆波导旋转关节及设计方法: CN111934066A[P]. 2020-11-13

    Chen Xiang, Sun Dongquan, Li Jun, et al. Broadband non-contact circular waveguide rotary joint and design method: CN111934066A[P]. 2020-11-13
    [5] 舒挺, 王勇, 李继健, 等. 高功率微波的远场测量[J]. 强激光与粒子束, 2003, 15(5):485-488

    Shu Ting, Wang Yong, Li Jijian, et al. Measurement of high power microwaves in the far-field zones[J]. High Power Laser and Particle Beams, 2003, 15(5): 485-488
    [6] 刘义. 高功率微波功率测量相关技术研究[D]. 长沙: 国防科学技术大学, 2010: 2-5

    Liu Yi. Analysis of correlative technology on power measurement of high power microwave[D]. Changsha: Graduate School of National University of Defense Technology, 2010: 2-5
    [7] 张黎军, 陈昌华, 滕雁, 等. 高功率微波辐射场远场测量方法[J]. 强激光与粒子束, 2016, 28:53002 doi: 10.11884/HPLPB201628.053002

    Zhang Lijun, Chen Changhua, Teng Yan, et al. Farfield measurement method of high power microwave in radiation field[J]. High Power Laser and Particle Beams, 2016, 28: 53002 doi: 10.11884/HPLPB201628.053002
    [8] 钟鹰. 天线近场与远场性能测量比较[J]. 空间电子技术, 2002(1):55-60,64

    Zhong Ying. Comparison of near and far field performance measurement of antenna[J]. Space Electronic Technology, 2002(1): 55-60,64
    [9] Hu Xianggang, Su Jiancang, Zhang Mingtao, et al. An EIRP measurement method of high-power microwave systems based on near-field testing[J]. International Journal of Antennas and Propagation, 2024, 2024: 2048009.
    [10] 刘金亮, 钟辉煌, 谭启美. 同轴电探针耦合测高功率微波[J]. 微波学报, 1997, 13(1):83-87

    Liu Jinliang, Zhong Huihuang, Tan Qimei. Coaxial E-field probe coupling for high power microwave measurement[J]. Journal of Microwaves, 1997, 13(1): 83-87
    [11] 孙钧, 胡咏梅, 张立刚, 等. 圆波导定向耦合器在高功率微波测量中的应用[J]. 强激光与粒子束, 2014, 26:063040 doi: 10.11884/HPLPB201426.063040

    Sun Jun, Hu Yongmei, Zhang Ligang, et al. Application of circular waveguide couplers in high power microwave measurement[J]. High Power Laser and Particle Beams, 2014, 26: 063040 doi: 10.11884/HPLPB201426.063040
    [12] Earley L M, Ballard W P, Wharton C B. New directional couplers for multimode circujlar waveguides applied to intense pulsed microwave systems[J]. IEEE Transactions on Nuclear Science, 1985, 32(5): 2921-2923. doi: 10.1109/TNS.1985.4334227
    [13] 曹亦兵, 孙钧, 张黎军, 等. 一种高功率容量HPM耦合测量装置[J]. 现代应用物理, 2016, 7:010502 doi: 10.3969/j.issn.2095-6223.2016.01.006

    Cao Yibing, Sun Jun, Zhang Lijun, et al. A high power capacity coupler for HPM measurement[J]. Modern Applied Physics, 2016, 7: 010502 doi: 10.3969/j.issn.2095-6223.2016.01.006
    [14] 张治强, 张晓微, 邵浩, 等. 一种基于磁耦合的HPM定向耦合器设计[J]. 现代应用物理, 2020, 11:30503 doi: 10.12061/j.issn.2095-6223.2020.030503

    Zhang Zhiqiang, Zhang Xiaowei, Shao Hao, et al. An HPM directional coupler design based on magnetic coupling[J]. Modern Applied Physics, 2020, 11: 30503 doi: 10.12061/j.issn.2095-6223.2020.030503
    [15] 胡超然. 过模波导传输系统的研究[C]//2018年全国微波毫米波会议论文集(上册). 成都: 中国电子学会, 2018: 665-668

    Hu Chaoran. Study on overmoded waveguides transmission system[C]//Proceedings of 2021 National Microwave and Millimeter Wave Conference (Volume 1). Chengdu: The Chinese Institute of Electronics, 2018: 665-668
    [16] Otsuka M, Shimizu M. Mode filter for high-power microwaves[J]. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(9): 1650-1654. doi: 10.1109/22.83842
    [17] Kilpatrick W D. Criterion for vacuum sparking designed to include both rf and dc[J]. Review of Scientific Instruments, 1957, 28(10): 824-826. doi: 10.1063/1.1715731
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-06
  • 修回日期:  2025-03-08
  • 录用日期:  2024-12-04
  • 网络出版日期:  2025-04-27

目录

    /

    返回文章
    返回