留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率电子加速器装置性能评价及其消毒效果

刘燕琴 黄邦斗 沙斯烁 覃怀莉 宋碧莹 周佳 任哲 邵涛

刘燕琴, 黄邦斗, 沙斯烁, 等. 高功率电子加速器装置性能评价及其消毒效果[J]. 强激光与粒子束, 2025, 37: 044010. doi: 10.11884/HPLPB202537.240388
引用本文: 刘燕琴, 黄邦斗, 沙斯烁, 等. 高功率电子加速器装置性能评价及其消毒效果[J]. 强激光与粒子束, 2025, 37: 044010. doi: 10.11884/HPLPB202537.240388
Liu Yanqin, Huang Bangdou, Sha Sishuo, et al. Performance evaluation and disinfection effect of high-power electron accelerators[J]. High Power Laser and Particle Beams, 2025, 37: 044010. doi: 10.11884/HPLPB202537.240388
Citation: Liu Yanqin, Huang Bangdou, Sha Sishuo, et al. Performance evaluation and disinfection effect of high-power electron accelerators[J]. High Power Laser and Particle Beams, 2025, 37: 044010. doi: 10.11884/HPLPB202537.240388

高功率电子加速器装置性能评价及其消毒效果

doi: 10.11884/HPLPB202537.240388
基金项目: 国家重点研发计划项目(2023YFC2604600)
详细信息
    作者简介:

    刘燕琴,liuyanqin@nuctech.com

    通讯作者:

    黄邦斗,huangbangdou@mail.iee.ac.cn

    任 哲,13810710625@163.com

  • 中图分类号: TL5;Q691

Performance evaluation and disinfection effect of high-power electron accelerators

  • 摘要: 为考察高功率电子加速器是否达到设计指标性能和消毒效果,利用标准规定的方法和程序对高功率电子加速器的性能进行了测试和评价,探究了该电子加速器输出电子束对金黄色葡萄球菌、大肠埃希氏菌、短小芽孢杆菌和新型冠状病毒等微生物的灭活效果,同时考察了不同材质负载对于杀灭效果的影响。该电子加速器可以输出能量10.27 MeV、功率25 kW的高能电子束,束流扫描不均匀度为4.1%,并且对于模拟材料具有一定的穿透能力;电子束对金黄色葡萄球菌、大肠埃希氏菌、短小芽孢杆菌等微生物的消毒效果均能达到3个对数值及以上,并且穿透一定厚度负载材料后对金黄色葡萄球菌、大肠埃希氏菌、短小芽孢杆菌及枯草杆菌黑色变种芽孢的消毒效果均能达到杀灭3个对数值及以上。设计的电子加速器性能指标达标,同时具备一定的穿透能力,对研究微生物的消毒效果达标。
  • 图  1  聚苯乙烯楔形块电子束能量测试示意图

    Figure  1.  Schematic diagram of energy test using polystyrene wedge

    图  2  束流强度测试示意图(水槽法)

    Figure  2.  Process diagram of beam current test (water tank method)

    图  3  模拟材料与剂量计交替叠层布置示意图

    Figure  3.  Schematic diagram of alternating stacking of simulation materials and dosimeters

    图  4  电子加速器消毒实验示意图

    Figure  4.  Diagram of electron accelerator disinfection experiment

    图  5  电子束沿扫描方向剂量分布曲线

    Figure  5.  Dose distribution along the scanning direction x

    图  6  不同模拟材料质量深度-剂量分布结果与理论模拟结果对比

    Figure  6.  Comparison of mass thickness dose distribution results of different simulated materials with theoretical simulation outcomes

    图  7  不同模拟材料中随厚度变化的剂量分布

    Figure  7.  Dose distribution with thickness in different simulated materials

    图  8  电子束对微生物的杀灭剂量关系

    Figure  8.  Relationship between the disinfection dose of electron beam on microorganisms

    表  1  电子束能量测量结果

    Table  1.   Measurement results of electron beam energy

    E1/MeV E2/MeV E3/MeV E4/MeV E5/MeV Eav/MeV ΔE/ Eav
    10.06 10.22 10.34 10.44 10.30 10.27 1%
    下载: 导出CSV

    表  2  平均束流强度测量结果

    Table  2.   Measurement results of average electron beam intensity

    Ie1/mA Ie2/mA Ie3/mA Ie4/mA Ie5/mA Ieav/mA ΔIe/Ieav
    2.49 2.45 2.44 2.42 2.42 2.44 1.2%
    下载: 导出CSV

    表  3  表面不均匀度测试结果汇总表

    Table  3.   Measurement results of electron beam scanning uniformity

    Ux1 Ux2 Ux3 Ux4 Ux5 Uxav
    4.1% 4.2% 4.2% 3.8% 4.2% 4.1%
    下载: 导出CSV

    表  4  电子束对一定厚度负载材料微生物的杀灭效果

    Table  4.   Disinfection effect of electron beam on microorganisms in materials with certain thickness

    material (thickness) average killing logarithm value
    Bacillus subtilis var.niger Bacillus pumilus Staphylococcus aureus Escherichia coli
    corrugated board (10.6 cm) 4.15 4.64 4.51 4.57
    PVC expansion sheet (10 cm) 3.04 3.68 6.30 4.57
    下载: 导出CSV
  • [1] 杜方岭, 王志芬, 王守经, 等. 电子束辐射技术应用研究及发展前景[J]. 山东农业科学, 2009, 12:102-104 doi: 10.3969/j.issn.1001-4942.2009.03.030

    Du Fangling, Wang Zhifen, Wang Shoujing, et al. Application study and development prospect of electron beam irradiation technology[J]. Shandong Agricultural Sciences, 2009, 12: 102-104 doi: 10.3969/j.issn.1001-4942.2009.03.030
    [2] 江海, 袁肖肖, 张伟, 等. 10MeV电子直线加速器辐照控制工艺研究[J]. 制造业自动化, 2018, 40(7):144-147 doi: 10.3969/j.issn.1009-0134.2018.07.038

    Jiang Hai, Yuan Xiaoxiao, Zhang Wei, et al. Study on irradiation control technology of 10MeV electron linear accelerator[J]. Manufacturing Automation, 2018, 40(7): 144-147 doi: 10.3969/j.issn.1009-0134.2018.07.038
    [3] 陈志军, 戚文元, 颜伟强, 等. 10MeV电子直线加速器辐照工艺确定的简便方法及其应用[J]. 核农学报, 2016, 30(4):755-763 doi: 10.11869/j.issn.100-8551.2016.04.0755

    Chen Zhijun, Qi Wenyuan, Yan Weiqiang, et al. Development of an easy and effective method for 10MeV linear accelerator irradiation and its application in food process[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(4): 755-763 doi: 10.11869/j.issn.100-8551.2016.04.0755
    [4] 吕泽琦, 谢彦召, 杨海亮. 消毒灭菌的电离辐射与电磁辐射等物理技术比较分析[J]. 强激光与粒子束, 2020, 32:059001 doi: 10.11884/HPLPB202032.200077

    Lü Zeqi, Xie Yanzhao, Yang Hailiang. Comparison and analysis of the electromagnetic radiation, ionizing radiation and other physical technologies for disinfection and sterilization[J]. High Power Laser and Particle Beams, 2020, 32: 059001 doi: 10.11884/HPLPB202032.200077
    [5] 中国科学院高能物理研究所. 智能控制的可移动式电子束辐照装置: CN202022634267. X[P]. 2022-02-11

    Institute of High Energy Physics, Chinese Academy of Sciences. Intelligent control movable electron beam irradiation device: CN202022634267. X[P]. 2022-02-11
    [6] 大连大学. 一种用于整车消毒及冷链产品消杀的自动化组合装置: CN202110649852.3[P]. 2021-08-27

    Dalian University. Automatic combined device for whole vehicle disinfection and cold chain product disinfection: CN202110649852.3[P]. 2021-08-27
    [7] 王梁燕, 洪奇华, 孙志明, 等. 电子束辐照技术在生命科学中的应用[J]. 核农学报, 2018, 32(2):283-290 doi: 10.11869/j.issn.100-8551.2018.02.0283

    Wang Liangyan, Hong Qihua, Sun Zhiming, et al. Application of electron beam irradiation in life sciences[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(2): 283-290 doi: 10.11869/j.issn.100-8551.2018.02.0283
    [8] 汪泽生, 邵阳, 罗敏, 等. 纸质文物辐照消毒研究进展[J]. 文物保护与考古科学, 2023, 35(4):159-167

    Wang Zesheng, Shao Yang, Luo Min, et al. Progress in research on irradiation disinfection of paper cultural relics[J]. Sciences of Conservation and Archaeology, 2023, 35(4): 159-167
    [9] 中国科学院高能物理研究所. 一种采用辐照技术的小型可移动文物的消毒系统: CN202122841976. X[P]. 2023-04-11

    Institute of High Energy Physics, Chinese Academy of Sciences. Small movable cultural relic disinfection system adopting irradiation technology: CN202122841976. X[P]. 2023-04-11
    [10] Han Sangha, Jo J Y, Park S R, et al. Impact of chlorine dioxide and electron-beam irradiation for the reduction of murine norovirus in low-salted “jogaejeotgal”, a traditional Korean salted and fermented clam[J]. International Journal of Food Microbiology, 2021, 342: 109073. doi: 10.1016/j.ijfoodmicro.2021.109073
    [11] Hojjati M, Shahbazi S, Askari H, et al. Impact of the gamma and electron beam irradiations on yeast-spot disease fungal agent and physicochemical attributes of hazelnut (Corylus avellana L. )[J]. Radiation Physics and Chemistry, 2024, 216: 111469. doi: 10.1016/j.radphyschem.2023.111469
    [12] 冯雨宸, 兰文升, 洗嘉恒, 等. 低能电子束辐照对3种指示微生物消毒效果评价[J]. 中国口岸科学技术, 2023, 5(2):81-85 doi: 10.3969/j.issn.1002-4689.2023.02.014

    Feng Yuchen, Lan Wensheng, Xian Jiaheng, et al. Evaluation of disinfection effect of low electron bean irradiation on three indicator microorganisms[J]. China Port Science and Technology, 2023, 5(2): 81-85 doi: 10.3969/j.issn.1002-4689.2023.02.014
    [13] 陈妙玲, 徐玉清, 胡璐璐, 等. 电子束辐照对不同载体上两种微生物的消毒效果研究[J]. 现代预防医学, 2023, 50(21):3965-3968,3990

    Chen Miaoling, Xu Yuqing, Hu Lulu, et al. Study on the disinfection effect of electron beam irradiation on two kinds of microorganisms on different carriers[J]. Modern Preventive Medicine, 2023, 50(21): 3965-3968,3990
    [14] 王海宏, 孔秋莲, 戚文元, 等. 电子束γ射线和X射线辐照对短小芽孢杆菌杀菌效果的研究[J]. 农产品加工, 2014(12):15-17,21 doi: 10.3969/j.issn.1671-9646(s).2014.12.005

    Wang Haihong, Kong Qiulian, Qi Wenyuan, et al. Sterilizing effect of electron beam γ-rays and X-rays on Bacillus pumilus[J]. Farm Products Processing, 2014(12): 15-17,21 doi: 10.3969/j.issn.1671-9646(s).2014.12.005
    [15] 于千帆, 王金鹏, 曹锦轩, 等. 冷链食品病毒控制及其次生危害研究进展[J]. 食品安全质量检测学报, 2023, 14(17):276-284

    Yu Qianfan, Wang Jinpeng, Cao Jinxuan, et al. Research progress of virus control and secondary hazards in cold chain food[J]. Journal of Food Safety and Quality, 2023, 14(17): 276-284
    [16] 罗宗洪. 电子束辐照对病原微生物灭活效果评价以及对冷链大黄鱼品质的影响[D]. 杨凌: 西北农林科技大学, 2023

    Luo Zonghong. Effects of electron beam irradiation on inactivation of pathogenic microorganisms and quality of cold chain large yellow croaker[D]. Yangling: Northwest A&F University, 2023
    [17] Liu Yan, Shao Yang, Wang Lu, et al. Inactivation of porcine epidemic diarrhea virus with electron beam irradiation under cold chain conditions[J]. Environmental Technology & Innovation, 2022, 27: 102715.
    [18] Chang Guanhong, Luo Zonghong, Zhang Yao, et al. Effect and mechanism of eliminating Staphylococcus aureus by electron beam irradiation and reducing the toxicity of its metabolites[J]. Applied and Environmental Microbiology, 2023, 89: e02075-22.
    [19] 杨孝祥, 钱胜兵, 刘威龙, 等. 电子束杀灭新型冠状病毒的效果验证[J]. 中国消毒学杂志, 2024, 41(3):168-171

    Yang Xiaoxiang, Qian Shengbing, Liu Weilong, et al. Verification of killing effect of electron beam on SARS-CoV-2[J]. Chinese Journal of Disinfection, 2024, 41(3): 168-171
    [20] 王海宏, 郑琦, 颜伟强, 等. 电子束辐照抑制几种常见食源性致病菌生长的研究[J]. 食品与生物技术学报, 2021, 40(10):91-97 doi: 10.3969/j.issn.1673-1689.2021.10.012

    Wang Haihong, Zheng Qi, Yan Weiqiang, et al. Inhibition of growth of several common food borne pathogens by electron beam irradiation[J]. Journal of Food Science and Biotechnology, 2021, 40(10): 91-97 doi: 10.3969/j.issn.1673-1689.2021.10.012
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  154
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-11
  • 修回日期:  2025-02-14
  • 录用日期:  2025-02-14
  • 网络出版日期:  2025-03-31
  • 刊出日期:  2025-04-15

目录

    /

    返回文章
    返回