Performance evaluation and disinfection effect of high-power electron accelerators
-
摘要: 为考察高功率电子加速器是否达到设计指标性能和消毒效果,利用标准规定的方法和程序对高功率电子加速器的性能进行了测试和评价,探究了该电子加速器输出电子束对金黄色葡萄球菌、大肠埃希氏菌、短小芽孢杆菌和新型冠状病毒等微生物的灭活效果,同时考察了不同材质负载对于杀灭效果的影响。该电子加速器可以输出能量10.27 MeV、功率25 kW的高能电子束,束流扫描不均匀度为4.1%,并且对于模拟材料具有一定的穿透能力;电子束对金黄色葡萄球菌、大肠埃希氏菌、短小芽孢杆菌等微生物的消毒效果均能达到3个对数值及以上,并且穿透一定厚度负载材料后对金黄色葡萄球菌、大肠埃希氏菌、短小芽孢杆菌及枯草杆菌黑色变种芽孢的消毒效果均能达到杀灭3个对数值及以上。设计的电子加速器性能指标达标,同时具备一定的穿透能力,对研究微生物的消毒效果达标。Abstract: To observe whether the high-power electron accelerator achieves the design index performance and disinfection effect, the performance of the high-power electron accelerator using the methods and procedures specified in the standard was tested and evaluated, and the inactivation effect of the electron beam output from the electron accelerator on microorganisms such as Staphylococcus aureus, Escherichia coli, Bacillus cereus, coronavirus, was explored. At the same time, examined how different material loads affected the inactivation efficiency. The high-power electron accelerator, can output a high-energy electron beam with an energy of 10.27 MeV and a power of 25 kW and it was found to have a certain level of penetration capability for surrogate materials. The electron beam achieves a disinfection effect of 3 log reductions or higher against microorganisms such as Staphylococcus aureus, Escherichia coli, Bacillus cereus, and coronaviruses. After penetrating a certain thickness of load material, the electron beam can still achieve a disinfection effect of 3 log reductions or higher against Staphylococcus aureus, Escherichia coli, Bacillus cereus, and Bacillus subtilis (black variant) spores. The designed electron accelerator meets the performance specifications and has a certain level of penetration capacity, effectively achieving the required disinfection effect against the studied microorganisms.
-
Key words:
- electron accelerator /
- irradiation /
- disinfection /
- microbe /
- biosafety
-
表 1 电子束能量测量结果
Table 1. Measurement results of electron beam energy
E1/MeV E2/MeV E3/MeV E4/MeV E5/MeV Eav/MeV ΔE/ Eav 10.06 10.22 10.34 10.44 10.30 10.27 1% 表 2 平均束流强度测量结果
Table 2. Measurement results of average electron beam intensity
Ie1/mA Ie2/mA Ie3/mA Ie4/mA Ie5/mA Ieav/mA ΔIe/Ieav 2.49 2.45 2.44 2.42 2.42 2.44 1.2% 表 3 表面不均匀度测试结果汇总表
Table 3. Measurement results of electron beam scanning uniformity
Ux1 Ux2 Ux3 Ux4 Ux5 Uxav 4.1% 4.2% 4.2% 3.8% 4.2% 4.1% 表 4 电子束对一定厚度负载材料微生物的杀灭效果
Table 4. Disinfection effect of electron beam on microorganisms in materials with certain thickness
material (thickness) average killing logarithm value Bacillus subtilis var.niger Bacillus pumilus Staphylococcus aureus Escherichia coli corrugated board (10.6 cm) 4.15 4.64 4.51 4.57 PVC expansion sheet (10 cm) 3.04 3.68 6.30 4.57 -
[1] 杜方岭, 王志芬, 王守经, 等. 电子束辐射技术应用研究及发展前景[J]. 山东农业科学, 2009, 12:102-104 doi: 10.3969/j.issn.1001-4942.2009.03.030Du Fangling, Wang Zhifen, Wang Shoujing, et al. Application study and development prospect of electron beam irradiation technology[J]. Shandong Agricultural Sciences, 2009, 12: 102-104 doi: 10.3969/j.issn.1001-4942.2009.03.030 [2] 江海, 袁肖肖, 张伟, 等. 10MeV电子直线加速器辐照控制工艺研究[J]. 制造业自动化, 2018, 40(7):144-147 doi: 10.3969/j.issn.1009-0134.2018.07.038Jiang Hai, Yuan Xiaoxiao, Zhang Wei, et al. Study on irradiation control technology of 10MeV electron linear accelerator[J]. Manufacturing Automation, 2018, 40(7): 144-147 doi: 10.3969/j.issn.1009-0134.2018.07.038 [3] 陈志军, 戚文元, 颜伟强, 等. 10MeV电子直线加速器辐照工艺确定的简便方法及其应用[J]. 核农学报, 2016, 30(4):755-763 doi: 10.11869/j.issn.100-8551.2016.04.0755Chen Zhijun, Qi Wenyuan, Yan Weiqiang, et al. Development of an easy and effective method for 10MeV linear accelerator irradiation and its application in food process[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(4): 755-763 doi: 10.11869/j.issn.100-8551.2016.04.0755 [4] 吕泽琦, 谢彦召, 杨海亮. 消毒灭菌的电离辐射与电磁辐射等物理技术比较分析[J]. 强激光与粒子束, 2020, 32:059001 doi: 10.11884/HPLPB202032.200077Lü Zeqi, Xie Yanzhao, Yang Hailiang. Comparison and analysis of the electromagnetic radiation, ionizing radiation and other physical technologies for disinfection and sterilization[J]. High Power Laser and Particle Beams, 2020, 32: 059001 doi: 10.11884/HPLPB202032.200077 [5] 中国科学院高能物理研究所. 智能控制的可移动式电子束辐照装置: CN202022634267. X[P]. 2022-02-11Institute of High Energy Physics, Chinese Academy of Sciences. Intelligent control movable electron beam irradiation device: CN202022634267. X[P]. 2022-02-11 [6] 大连大学. 一种用于整车消毒及冷链产品消杀的自动化组合装置: CN202110649852.3[P]. 2021-08-27Dalian University. Automatic combined device for whole vehicle disinfection and cold chain product disinfection: CN202110649852.3[P]. 2021-08-27 [7] 王梁燕, 洪奇华, 孙志明, 等. 电子束辐照技术在生命科学中的应用[J]. 核农学报, 2018, 32(2):283-290 doi: 10.11869/j.issn.100-8551.2018.02.0283Wang Liangyan, Hong Qihua, Sun Zhiming, et al. Application of electron beam irradiation in life sciences[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(2): 283-290 doi: 10.11869/j.issn.100-8551.2018.02.0283 [8] 汪泽生, 邵阳, 罗敏, 等. 纸质文物辐照消毒研究进展[J]. 文物保护与考古科学, 2023, 35(4):159-167Wang Zesheng, Shao Yang, Luo Min, et al. Progress in research on irradiation disinfection of paper cultural relics[J]. Sciences of Conservation and Archaeology, 2023, 35(4): 159-167 [9] 中国科学院高能物理研究所. 一种采用辐照技术的小型可移动文物的消毒系统: CN202122841976. X[P]. 2023-04-11Institute of High Energy Physics, Chinese Academy of Sciences. Small movable cultural relic disinfection system adopting irradiation technology: CN202122841976. X[P]. 2023-04-11 [10] Han Sangha, Jo J Y, Park S R, et al. Impact of chlorine dioxide and electron-beam irradiation for the reduction of murine norovirus in low-salted “jogaejeotgal”, a traditional Korean salted and fermented clam[J]. International Journal of Food Microbiology, 2021, 342: 109073. doi: 10.1016/j.ijfoodmicro.2021.109073 [11] Hojjati M, Shahbazi S, Askari H, et al. Impact of the gamma and electron beam irradiations on yeast-spot disease fungal agent and physicochemical attributes of hazelnut (Corylus avellana L. )[J]. Radiation Physics and Chemistry, 2024, 216: 111469. doi: 10.1016/j.radphyschem.2023.111469 [12] 冯雨宸, 兰文升, 洗嘉恒, 等. 低能电子束辐照对3种指示微生物消毒效果评价[J]. 中国口岸科学技术, 2023, 5(2):81-85 doi: 10.3969/j.issn.1002-4689.2023.02.014Feng Yuchen, Lan Wensheng, Xian Jiaheng, et al. Evaluation of disinfection effect of low electron bean irradiation on three indicator microorganisms[J]. China Port Science and Technology, 2023, 5(2): 81-85 doi: 10.3969/j.issn.1002-4689.2023.02.014 [13] 陈妙玲, 徐玉清, 胡璐璐, 等. 电子束辐照对不同载体上两种微生物的消毒效果研究[J]. 现代预防医学, 2023, 50(21):3965-3968,3990Chen Miaoling, Xu Yuqing, Hu Lulu, et al. Study on the disinfection effect of electron beam irradiation on two kinds of microorganisms on different carriers[J]. Modern Preventive Medicine, 2023, 50(21): 3965-3968,3990 [14] 王海宏, 孔秋莲, 戚文元, 等. 电子束γ射线和X射线辐照对短小芽孢杆菌杀菌效果的研究[J]. 农产品加工, 2014(12):15-17,21 doi: 10.3969/j.issn.1671-9646(s).2014.12.005Wang Haihong, Kong Qiulian, Qi Wenyuan, et al. Sterilizing effect of electron beam γ-rays and X-rays on Bacillus pumilus[J]. Farm Products Processing, 2014(12): 15-17,21 doi: 10.3969/j.issn.1671-9646(s).2014.12.005 [15] 于千帆, 王金鹏, 曹锦轩, 等. 冷链食品病毒控制及其次生危害研究进展[J]. 食品安全质量检测学报, 2023, 14(17):276-284Yu Qianfan, Wang Jinpeng, Cao Jinxuan, et al. Research progress of virus control and secondary hazards in cold chain food[J]. Journal of Food Safety and Quality, 2023, 14(17): 276-284 [16] 罗宗洪. 电子束辐照对病原微生物灭活效果评价以及对冷链大黄鱼品质的影响[D]. 杨凌: 西北农林科技大学, 2023Luo Zonghong. Effects of electron beam irradiation on inactivation of pathogenic microorganisms and quality of cold chain large yellow croaker[D]. Yangling: Northwest A&F University, 2023 [17] Liu Yan, Shao Yang, Wang Lu, et al. Inactivation of porcine epidemic diarrhea virus with electron beam irradiation under cold chain conditions[J]. Environmental Technology & Innovation, 2022, 27: 102715. [18] Chang Guanhong, Luo Zonghong, Zhang Yao, et al. Effect and mechanism of eliminating Staphylococcus aureus by electron beam irradiation and reducing the toxicity of its metabolites[J]. Applied and Environmental Microbiology, 2023, 89: e02075-22. [19] 杨孝祥, 钱胜兵, 刘威龙, 等. 电子束杀灭新型冠状病毒的效果验证[J]. 中国消毒学杂志, 2024, 41(3):168-171Yang Xiaoxiang, Qian Shengbing, Liu Weilong, et al. Verification of killing effect of electron beam on SARS-CoV-2[J]. Chinese Journal of Disinfection, 2024, 41(3): 168-171 [20] 王海宏, 郑琦, 颜伟强, 等. 电子束辐照抑制几种常见食源性致病菌生长的研究[J]. 食品与生物技术学报, 2021, 40(10):91-97 doi: 10.3969/j.issn.1673-1689.2021.10.012Wang Haihong, Zheng Qi, Yan Weiqiang, et al. Inhibition of growth of several common food borne pathogens by electron beam irradiation[J]. Journal of Food Science and Biotechnology, 2021, 40(10): 91-97 doi: 10.3969/j.issn.1673-1689.2021.10.012 -