Design of high power miniaturized stepped double semicircular waveguide mode-transducing antenna
-
摘要: 在高功率微波辐射领域中,模式变换器加喇叭天线是实现旋转轴对称模定向辐射的常用技术,但模式变换器与喇叭天线的分离设计往往会使得天线轴向和口面尺寸较大。为了满足实际应用场景对天线小型化的需求,提出了一种模式控制与辐射一体化的阶梯型双半圆波导辐射天线。该天线由圆波导TM01模输入,通过插板将圆波导TM01模分成两路相位相反的半圆波导TE11模,之后再连接两个不对称的阶梯型半圆波导辐射器实现微波辐射。功分器采用了渐变圆波导进行匹配,同时采用大半径的内导体以提高功率容量。双半圆波导辐射器利用模式匹配法结合粒子群优化算法进行相位调节和模式控制。通过分区域的模式控制和辐射一体化设计,在辐射口面处达到更加均匀的同相电场分布,实现定向辐射,从而缩短了天线长度、降低了口面大小。优化设计了一个中心频率为2.85 GHz的天线模型,天线尺寸为1.18λ×1.18λ × 2.42λ。仿真结果表明:在2.75~2.96 GHz内天线回波损耗大于15 dB,在2.71~3 GHz内实际增益大于15.5 dBi,中心频点的实际增益为16.14 dBi,真空功率容量为906 MW。相比于传统的模式转换器加喇叭天线的技术路线,该天线具有高功率容量、小型化的特点。Abstract: In the field of high-power microwave radiation, mode converter and horn antenna are commonly used technologies to achieve rotational axisymmetric mode-directed radiation, but the separate design of mode converter and horn antenna often results in a large axial and aperture size of the antenna. To meet the demand for miniaturization of antennas in actual application scenarios, a stepped double semicircular waveguides radiation antenna with mode control and radiation integration is proposed. The antenna is fed with a circular waveguide TM01 mode and divided into two 180° phase difference semicircular waveguides by a plate. Then, two asymmetric stepped semicircular waveguide radiation elements are connected to achieve microwave radiation. The power divider uses a gradually tapered circular waveguide for matching, and a large inner conductor is used to improve power capacity. The dual semicircular waveguide radiation elements use the mode matching method combined with the Particle Swarm Optimization algorithm for phase adjustment and mode control. By integrating mode control and radiation in a multi-region design, a more uniform co-phase electric field distribution is achieved at the radiation aperture, achieving directed radiation, thereby shortening the antenna length and reducing the aperture size. An antenna model with a center frequency of 2.85 GHz is optimized, with dimensions of 1.18λ×1.18λ×2.42λ. Simulation results show that the return loss of the antenna is greater than 15 dB in the 2.75−2.96 GHz band, the realized gain is greater than 15.5 dBi in the 2.71−3 GHz band, the realized gain at the center frequency is 16.14 dBi and the vacuum power capacity is 906 MW. Compared with the traditional mode converter and horn antenna technology route, the proposed antenna has the characteristics of high power capacity and miniaturization.
-
表 1 优化后参数
Table 1. Optimized parameters
(mm) r1 r2 r3 rm1 rm2 rm3 L1 L2 L3 L4 L5 47.78 65.30 35.71 9.10 12.34 5.57 7.27 2.70 2.67 3.06 6.51 表 2 与分离设计技术路线的对比
Table 2. Comparison with separately designed technical routes
Ref. mode converter type
and antenna typemode converter
lengthhorn size combined size power capacity [11] coaxial conductor with inserted plate, horn 4.73λ 1.4λ×1.4λ×1.5λ 1.4λ×1.4λ×6.28λ not mentioned@4.05 GHz [12] 2 CirWG-to-4-orthometric-RecWGs, horn >4.75λ 1.4λ×1.4λ×1.5λ 1.4λ×1.4λ×(>6.25λ) 2 GW@9.5 GHz [13] rectangular plate, horn 2λ 1.4λ×1.4λ×1.5λ 1.4λ×1.4λ×3.55λ 558 MW@8.45 GHz [14] triangular plate, horn 2.46λ 1.4λ×1.4λ×1.5λ 1.4λ×1.4λ×4.01λ 1 GW@3.4 GHz this work rectangular plate with
stepped-expanding aperture− − 1.18λ×1.18λ×2.43λ 906 MW@2.85 GHz -
[1] Li Guolin, Liu Qiang, Qiu Yongfeng, et al. A low standing-wave-ratio wideband mode-transducing antenna for high-power microwaves[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5182-5188. doi: 10.1109/TAP.2020.2981731 [2] Vlasov S N, Orlova I M. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into a highly directional wave beam[J]. Radiophysics and Quantum Electronics, 1974, 17(1): 115-119. doi: 10.1007/BF01037072 [3] 袁成卫, 凌根深. Vlasov辐射器反射特性研究[J]. 强激光与粒子束, 2003, 15(2):172-175Yuan Chengwei, Ling Genshen. Reflective characteristics of bevel-cut Vlasov radiator[J]. High Power Laser and Particle Beams, 2003, 15(2): 172-175 [4] Yadav S V, Chittora A. A high power circularly polarized antenna with Overmoded waveguide[C]//Proceedings of 2021 IEEE Indian Conference on Antennas and Propagation. 2021: 431-434. [5] Yadav S V, Chittora A. Circularly polarized high-power antenna with higher-order mode excitation[J]. International Journal of Microwave and Wireless Technologies, 2022, 14(4): 477-481. doi: 10.1017/S1759078721000611 [6] 袁成卫, 刘庆想, 钟辉煌. 新型高功率微波模式转换天线研究[J]. 电波科学学报, 2005, 20(6):716-719,724 doi: 10.3969/j.issn.1005-0388.2005.06.005Yuan Chengwei, Liu Qingxiang, Zhong Huihuang. Research on a new high-power microwave mode-transducing antenna[J]. Chinese Journal of Radio Science, 2005, 20(6): 716-719,724 doi: 10.3969/j.issn.1005-0388.2005.06.005 [7] 袁成卫, 刘庆想, 钟辉煌, 等. 一种新型圆极化高功率微波天线[J]. 微波学报, 2005, 21(6):43-46 doi: 10.3969/j.issn.1005-6122.2005.06.011Yuan Chengwei, Liu Qingxiang, Zhong Huihuang, et al. A novel circularly-polarized high-power microwave antenna[J]. Journal of Microwaves, 2005, 21(6): 43-46 doi: 10.3969/j.issn.1005-6122.2005.06.011 [8] Yuan Chengwei, Fan Yuwei, Zhong Huihuang, et al. A novel mode-transducing antenna for high-power microwave application[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(10): 3022-3025. doi: 10.1109/TAP.2006.882199 [9] Wang Keqiang, Zhang Zhiqiang, Li Hao, et al. Theoretical and experimental investigations on a 90° compact TM01-TE11 mode converter for RBWO[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(2): 1072-1077. doi: 10.1109/TMTT.2021.3122804 [10] 张玉文, 舒挺, 袁成卫. TM01-TE11弯形圆波导模式转换器的优化设计[J]. 强激光与粒子束, 2005, 17(4):591-594Zhang Yuwen, Shu Ting, Yuan Chengwei. Optimization design of bent circular waveguide TM01-TE11 mode converter[J]. High Power Laser and Particle Beams, 2005, 17(4): 591-594 [11] Yuan Chengwei, Zhong Huihuang, Liu Qingxiang, et al. A novel TM01–TE11 circularly polarized (CP) mode converter[J]. IEEE Microwave and Wireless Components Letters, 2006, 16(8): 455-457. doi: 10.1109/LMWC.2006.879486 [12] Li J W, Deng G J, Guo L T, et al. Polarization controllable TM01-TE11 mode converter for high power microwaves[J]. AIP Advances, 2018, 8: 055230. doi: 10.1063/1.5026962 [13] 张晨, 刘强, 杜广星, 等. 紧凑型高功率微波圆波导TM01-TE11模式转换器[C]//2021年全国天线年会论文集. 2021: 2123-2125Zhang Chen, Liu Qiang, Du Guangxing, et al. A compact high-power microwave circular waveguide TM01-TE11 mode converter[C]//Proceedings of the National Antenna Annual Meeting, 2021: 2123-2125 [14] Chittora A, Singh S, Sharma A, et al. A tapered metallic baffle TM01 to TE11Y mode converter with TE11X mode transmission capability[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(10): 633-635. doi: 10.1109/LMWC.2015.2463219 [15] Ceccuzzi S. Modal techniques for microwave components in fusion engineering and for periodic structures applied to directive antennas[D]. Rome, Università degli studi Roma Tre, 2015: 138-143. [16] 李浩, 钟哲夫. 运用模匹配法设计高功率高效率多模馈源[J]. 强激光与粒子束, 2005, 17(8):1243-1246Li Hao, Zhong Zhefu. Design of high power and high efficient multimode feed by MMT[J]. High Power Laser and Particle Beams, 2005, 17(8): 1243-1246 [17] 巩进杰. 模式匹配法及其在微波谐振腔中的应用[D]. 成都: 电子科技大学, 2018Gong Jinjie. Mode matching method and its application in microwave resonator[D]. Chengdu: University of Electronic Science and Technology of China, 2018 [18] Zhang Keqian, Li Dejie. Electromagnetic theory for microwaves and optoelectronics[M]. Berlin, Heidelberg: Springer, 2008: 264-268. [19] 张宇, 渠芳芳. 一种超宽带多模喇叭的设计[J]. 电波科学学报, 2019, 34(5):567-573Zhang Yu, Qu Fangfang. Design of a wide-band multi-mode horn[J]. Chinese Journal of Radio Science, 2019, 34(5): 567-573 -