留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SU-8微米光栅衍射性能研究

李景鹏 王珏 张雪凤 李毅 岱钦 崔建丰 王磊 乌日娜

李景鹏, 王珏, 张雪凤, 等. SU-8微米光栅衍射性能研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240392
引用本文: 李景鹏, 王珏, 张雪凤, 等. SU-8微米光栅衍射性能研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240392
Li Jingpeng, Wang Jue, Zhang Xuefeng, et al. Study on diffraction performance of SU-8 micron grating[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240392
Citation: Li Jingpeng, Wang Jue, Zhang Xuefeng, et al. Study on diffraction performance of SU-8 micron grating[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240392

SU-8微米光栅衍射性能研究

doi: 10.11884/HPLPB202537.240392
基金项目: 国家重点研发计划(022YFB4601603);2022年辽宁省“揭榜挂帅”科技计划重点项目;沈阳理工大学光选科研团队建设项目
详细信息
    作者简介:

    李景鹏,1809859729@qq.com

    通讯作者:

    乌日娜,wurina2007@126.com

  • 中图分类号: O436.1

Study on diffraction performance of SU-8 micron grating

  • 摘要: 研究了栅高对SU-8微米光栅衍射效率的影响。使用严格耦合波理论模拟分析了栅高分别为6~8 μm、12~16 μm、6~30 μm时的衍射效率,以及6~30 μm连续变化的0级和1级衍射效率。模拟结果显示,栅高6 μm时,0级衍射效率最低,1级衍射效率最高;在12 μm时,0级衍射效率最高,1级衍射效率最低。栅高6~30 μm连续变化时,衍射效率随之周期性变化。制备不同厚度的SU-8薄膜,采用皮秒激光刻蚀技术,制备了不同栅高的40 μm周期光栅。测量结果显示,周期40 μm光栅的栅高6.83 μm时,−1级衍射效率为28.4%,0级衍射效率约为14.7%;栅高13.45 μm时,0级衍射效率为31.46%,1级衍射效率12.35%。0级和1级衍射效率的大小随着栅高周期变化。理论模拟和实验探索,将对SU-8微米光栅的制备和一级衍射效率的提高提供重要的参考。
  • 图  1  光束以β角入射到一维矩阵光栅

    Figure  1.  Beam is incident at an angle of β onto a one-dimensional matrix grating

    图  2  周期40 μm光栅衍射效率随栅高的变化曲线

    Figure  2.  Variation curve of diffraction efficiency of a 40 μm periodic grating with grating height

    图  3  栅高6~30 μm的衍射效率变化曲线

    Figure  3.  Diffraction efficiency variation curve with grid height of 6~30 μm

    图  4  周期40 μm光栅样品偏光显微镜照片

    Figure  4.  Polarized microscope photo of a 40 μm grating sample with a period

    图  5  衍射效率测试装置图

    Figure  5.  Diffraction efficiency test device diagram

    图  6  光栅样品衍射图样

    Figure  6.  Diffraction pattern of grating sample

    图  7  周期40 μm样品衍射效率

    Figure  7.  Diffraction efficiency of samples with a period of 40 μm

    图  8  出现烧蚀现象的光栅

    Figure  8.  Grating with ablation phenomenon

    图  9  光栅栅条处理想状态和有凹陷状态

    Figure  9.  Ideal state and concave state at the grating bar

    图  10  存在凹陷状态的曲线变化

    Figure  10.  Curve changes with concave states

  • [1] 邓舒鹏, 李文萃, 黄文彬, 等. 基于全息聚合物分散液晶的有机二维光子晶体激光器的研究[J]. 物理学报, 2011, 60:086103 doi: 10.7498/aps.60.086103

    Deng Shupeng, Li Wencui, Huang Wenbin, et al. All-organic two-dimensional photonic crystal laser based on holographic polymer dispersed liquid crystals[J]. Acta Physica Sinica, 2011, 60: 086103 doi: 10.7498/aps.60.086103
    [2] Xia Q K, Wang D N. Optical fiber diffraction gratings[J]. IEEE Photonics Technology Letters, 2022, 34(3): 177-180. doi: 10.1109/LPT.2022.3145037
    [3] Rutkowska K A, Kozanecka-Szmigiel A. Design of tunable holographic liquid crystalline diffraction gratings[J]. Sensors (Basel, Switzerland), 2020, 20(23): 6789. doi: 10.3390/s20236789
    [4] 鹿胜康, 唐波, 陈伟, 等. 基于SU—8光刻胶的微光学元件制备工艺研究[J]. 传感器与微系统, 2022, 41(11):22-26

    Lu Shengkang, Tang Bo, Chen Wei, et al. Research on fabrication process of micro-optical components based on SU-8 photoresist[J]. Transducer and Microsystem Technologies, 2022, 41(11): 22-26
    [5] 余鑫. 基于SU8胶空气包层MMI型光分路器的仿真及飞秒激光制备研究[D]. 武汉: 湖北工业大学, 2021

    Yu Xin. Simulation and femtosecond laser fabrication of Air-clad MMI optical splitter based on SU8 photoresist[D]. Wuhan: Hubei University of Technology, 2021
    [6] 杨秋杰, 何志平, 糜忠良. 太赫兹立体相位光栅衍射特性分析[J]. 中国光学, 2020, 13(3):605-615

    Yang Qiujie, He Zhiping, Mi Zhongliang. Diffraction characteristics analysis of multi-depth phase modulation grating in terahertz band[J]. Chinese Optics, 2020, 13(3): 605-615
    [7] Ban Yaowen, Zhao Guobo, Zhang Zhenghui, et al. Study on the influence of surface roughness on the diffraction efficiency of two-dimensional gratings[J]. Optics Express, 2023, 31(18): 28701-28715. doi: 10.1364/OE.494470
    [8] Meshalkin A Y, Podlipnov V V, Ustinov A V, et al. Analysis of diffraction efficiency of phase gratings in dependence of duty cycle and depth[J]. Journal of Physics: Conference Series., 2019, 1368: 022047. doi: 10.1088/1742-6596/1368/2/022047
    [9] 王雅楠. 高深宽比熔融石英透射光栅[D]. 合肥: 中国科学技术大学, 2022

    Wang Yanan. Fused silica transmission gratings with high aspect ratio[D]. Hefei: University of Science and Technology of China, 2022
    [10] 王琦琦. DBR光栅形貌的横模调控特性研究[D]. 长春: 长春理工大学, 2022

    Wang Qiqi. Study of transverse mode modulation characteristics of DBR grating morphology[D]. Changchun: Changchun University of Science and Technology, 2022
    [11] 张泽全, 黄元申, 庄松林, 等. 亚波长光栅的衍射效率[J]. 仪器仪表学报, 2007, 28(4):667-672 doi: 10.3321/j.issn:0254-3087.2007.04.017

    Zhang Zequan, Huang Yuanshen, Zhuang Songlin, et al. Diffraction efficiency of sub-wavelength gratings[J]. Chinese Journal of Scientific Instrument, 2007, 28(4): 667-672 doi: 10.3321/j.issn:0254-3087.2007.04.017
    [12] 王斌. 亚波长介质光栅设计简化模式法的修正及相关研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2014

    Wang Bin. Modification and research on simplified modal method for dielectric subwavelength gratings design[D]. Changchun: Graduate School of Chinese Academy of Sciences (Changchun Institute of Optics, Precision Mechanics and Physics), 2014
    [13] 巴音贺希格. 衍射光栅色散理论与光栅设计、制作和检验方法研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2004

    BA Yanheshig. The study on the dispersion theory, design, manufacture, and efficiency test of diffraction gratings[D]. Changchun: Changchun Institute of Optics Fine Mechanics and Physics (CIOMP), The Chinese Academy of Sciences, 2004
    [14] 朱媛媛. 基于严格耦合波分析(RCWA)方法的相位光栅衍射特性研究[D]. 北京: 中央民族大学, 2020

    Zhu Yuanyuan. Study of the diffraction properties of phase gratings based on rigorous coupled wave analysis (RCWA)[D]. Beijing: Minzu University of China, 2020
    [15] 周常河, 张妍妍. 632.8纳米波长的高衍射效率石英透射光栅: CN1693930A. 2[P]. 2007-06-01

    Zhou Changhe, Zhang yanyan. High-Diffraction Efficiency Quartz Transmission Grating of 632.8 Nano Wavelength: CN1693930A[P]. 2005-11-09
    [16] 刘麟跃. 基于透射光谱反演法的亚波长光栅槽形参数测量技术研究[D]. 苏州: 苏州大学, 2015

    Liu Linyue. Research on measuring groove profile parameters of subwavelength grating based on transmission spectrum retrieval method[D]. Suzhou: Suzhou University, 2015
    [17] 王卫敏, 阮东升, 井绪峰. 正弦光栅标量衍射及等效介质理论有效性分析[J]. 光子学报, 2016, 45:0705001

    Wang Weimin, Ruan Dongsheng, Jing Xufeng. Analysis of accuracy of scalar diffraction theory and effective medium theory for sinusoidal grating[J]. Acta Photonica Sinica, 2016, 45: 0705001
    [18] 郭小花, 张明霞. 多光束干涉的扩展研究[J]. 天水师范学院学报, 2016, 36(5):13-14 doi: 10.3969/j.issn.1671-1351.2016.05.004

    Guo Xiaohua, Zhang Mingxia. Extended study on multi beam interference[J]. Journal of Tianshui Normal University, 2016, 36(5): 13-14 doi: 10.3969/j.issn.1671-1351.2016.05.004
    [19] 丁文革, 苑静, 李文博, 等. 基于反射和透射光谱的氢化非晶硅薄膜厚度及光学常量计算[J]. 光子学报, 2011, 40(7):1096-1099,1100 doi: 10.3788/gzxb20114007.1096

    Ding Wenge, Wan Jing, Li Wenbo, et al. Thickness and optical constants calculation of hydrogenated amorphous silicon film based on transmission and reflectance spectra[J]. Acta Photonica Sinica, 2011, 40(7): 1096-1099,1100 doi: 10.3788/gzxb20114007.1096
  • 加载中
图(10)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-13
  • 修回日期:  2025-04-02
  • 录用日期:  2025-03-13
  • 网络出版日期:  2025-04-27

目录

    /

    返回文章
    返回