Alignment measurement and adjustment for the whole system of Yunguang II accelerator
-
摘要: 云光二号加速器采用感应电压叠加技术路线,全系统包含12台Marx发生器、24条水线、12级感应腔和1条长磁绝缘传输线,由于装置规模大、级数多、结构复杂,为保证整体装配精度,尤其是感应腔和磁绝缘传输线的同轴度,对准直测量技术提出了很高的要求。针对国外同类装置测量系统复杂、过程繁琐的技术缺陷,提出了以激光跟踪仪为核心测量手段的全系统准直测量技术方案,分别完成了发生器输出法兰、感应腔导轨、磁绝缘传输线及其导轨的准直测量和调节,尤其是设计了能够实现双向内孔定心的靶标座测量机构,高精度、高效率实现了12级感应腔同轴串联的准直测量调节,为更大规模装置建设奠定了良好的技术基础。Abstract: Yunguang II accelerator adopts induction voltage adder technique route. The whole system consists of 12 Marx generators, 24 water lines, 12 induction cavities and a long magnetically insulated transmission line. Because of its large scale, many series and complex structure, the alignment measurement technique is required to ensure the whole assembly precision, especially the coaxiality of the induction cavity and the magnetically insulated transmission line. Aiming at the technical defects of complex and complicated measuring system of similar equipment in foreign countries, an all-system alignment measuring scheme using laser tracker as the core means is put forward. The alignment and adjustment of the generator output flange, induction cavity guide rail, magnetically insulation transmission line and its guide rail are completed respectively, especially a measuring mechanism of target base which can realize double-direction inner hole centering is designed. With high precision and efficiency, the alignment measurement and adjustment of 12-stage induction cavity in series is realized, which lays a good technical foundation for the construction of larger-scale facilities.
-
表 1 核心误差指标分配
Table 1. Allocation of core alignment errors
cavity
numbercavity coaxiality/
mmcavity
tilt/mmMITL
coaxiality/mmMITL fixture
position/mmtotal error/
mmcriteria/
mmextreme error
rate/%1 0.3 0.4 0.6 0.5 1.8 1.5 6.0 2 0.3 0.4 0.6 0.5 1.8 1.5 6.0 3 0.5 0.4 1.0 0.5 2.4 2.5 4.8 4 0.7 0.4 1.4 0.5 3.0 3.5 4.3 5 0.9 0.4 1.5 0.5 3.3 3.5 3.7 6 1.0 0.4 1.5 0.5 3.4 3.5 3.1 7 1.0 0.4 1.5 0.5 3.4 3.5 2.8 8 1.0 0.4 1.5 0.5 3.4 3.5 2.4 9 1.0 0.4 1.5 0.5 3.4 3.5 2.3 10 1.0 0.4 1.5 0.5 3.4 3.5 2.1 11 1.0 0.4 1.5 0.5 3.4 3.5 1.9 12 1.0 0.4 1.5 0.5 3.4 3.5 1.8 extension 1.0 0.4 1.5 0.5 3.4 3.5 1.7 表 2 基础误差指标分配
Table 2. Allocation of fundamental alignment errors
No. measured object measuring items criteria 1 generator output flange verticality ±0.1° 2 cavity rail horizontal position ±1 mm height position ±1 mm 3 cavity axial position ±5 mm 4 MITL rail horizontal position ±3 mm height position ±1 mm -
[1] Ramirez J J, Prestwich K R, Johnson D L, et al. Performance of the Hermes-III gamma ray simulator[C]//7th Pulsed Power Conference. 1989: 26-31. [2] Smith I D. Induction voltage adders and the induction accelerator family[J]. Physical Review Special Topic—Accelerators and Beams, 2004, 7: 064801. [3] 丛培天, 张国伟, 吴撼宇, 等. 3 MV感应电压叠加器的磁感应腔研制[J]. 强激光与粒子束, 2011, 23(2):563-568 doi: 10.3788/HPLPB20112302.0563Cong Peitian, Zhang Guowei, Wu Hanyu, et al. Design of inductive cavity for 3 MV induction voltage adder[J]. High Power Laser and Particle Beams, 2011, 23(2): 563-568 doi: 10.3788/HPLPB20112302.0563 [4] Hu Yixiang, Zeng Jiangtao, Sun Fengju, et al. Mathematical derivation of cell-driving-jitter effects on the risetime of IVA-output voltages[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2040-2044. [5] Hu Yixiang, Sun Fengju, Zeng Jiangtao, et al. Influences of cell-driving sequences on performances of magnetically insulated induction voltage adders[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 1984-1988. doi: 10.1109/TPS.2016.2570430 [6] Ramirez J J, Hasti D E, Corley J P, et al. The four stage Helia experiment[C]//5th IEEE Pulsed Power Conference. 1985: 143-146. [7] 邓建军, 王勐, 谢卫平, 等. 面向Z箍缩驱动聚变能源需求的超高功率重复频率驱动器技术[J]. 强激光与粒子束, 2014, 26:100201 doi: 10.11884/HPLPB201426.100201Deng Jianjun, Wang Meng, Xie Weiping, et al. Super-power repetitive Z-pinch driver for fusion-fission reactor[J]. High Power Laser and Particle Beams, 2014, 26: 100201 doi: 10.11884/HPLPB201426.100201 [8] Burgess E L, Crowder G W, Dowdican M C, et al. Alignment of the HERMES-III magnetically insulated transmission line[C]//6th IEEE Pulsed Power Conference. 1987: 506-509. [9] 王铜, 董岚, 梁静, 等. 中国散裂中子源准直控制网数据处理方法[J]. 强激光与粒子束, 2021, 33:104002 doi: 10.11884/HPLPB202133.210096Wang Tong, Dong Lan, Liang Jing, et al. Adjustment method of control network for alignment in CSNS[J]. High Power Laser and Particle Beams, 2021, 33: 104002 doi: 10.11884/HPLPB202133.210096 [10] Vikas, Sahu R K. A review on application of laser tracker in precision positioning metrology of particle accelerators[J]. Precision Engineering, 2021, 71: 232-249. [11] 吕伟, 闫逸花, 董岚, 等. 西安200 MeV质子应用装置准直测量与数据处理[J]. 现代应用物理, 2021, 12:030410Lv Wei, Yan Yihua, Dong Lan, et al. Alignment measurement and data processing for Xi’an 200 MeV proton application facility[J]. Modern Applied Physics, 2021, 12: 030410 [12] Manwiller P E. Three-dimensional network adjustment of laser tracker measurements for large-scale metrology applications[J]. Journal of Surveying Engineering, 2021, 147: 05020009. [13] 呼义翔, 曾江涛, 丛培天, 等. 一种快Marx发生器型感应电压叠加器: CN113162584A[P]. 2021-07-23Hu Yixiang, Zeng Jiangtao, Cong Peitian, et al. Fast Marx generator type induced voltage adder: CN113162584A[P]. 2021-07-23 [14] Hu Yixiang, Zeng Jiangtao, Sun Fengju, et al. Development of a Marx-coupled trigger generator with high voltages and low time delay[J]. Review of Scientific Instruments, 2016, 87: 104708. [15] Holt T A, Lara M B, Nunnally C, et al. Compact Marx generators modified for fast risetime[C]//2009 IEEE Pulsed Power Conference. 2009: 1197-1200. [16] 何德雨, 呼义翔, 曾江涛, 等. 磁绝缘传输线阴极准直建模与仿真[J]. 国防科技大学学报, 2021, 43(3):66-72 doi: 10.11887/j.cn.202103009He Deyu, Hu Yixiang, Zeng Jiangtao, et al. Alignment modeling and simulation of magnetically insulated transmission line cathode[J]. Journal of National University of Defense Technology, 2021, 43(3): 66-72 doi: 10.11887/j.cn.202103009 [17] Zou Wenkang, Chen Lin, Wang Meng, et al. Design of the magnetically insulated inductive adder for 50-stage LTD module[R]. 7th Euro-Asian Pulsed Power Conference, China. -