留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核脉冲峰值序列轻量化神经网络核素识别模型及其FPGA加速方法

李超 石睿 曾树鑫 徐鑫华 魏雨鸿 庹先国

李超, 石睿, 曾树鑫, 等. 核脉冲峰值序列轻量化神经网络核素识别模型及其FPGA加速方法[J]. 强激光与粒子束, 2025, 37: 059001. doi: 10.11884/HPLPB202537.240398
引用本文: 李超, 石睿, 曾树鑫, 等. 核脉冲峰值序列轻量化神经网络核素识别模型及其FPGA加速方法[J]. 强激光与粒子束, 2025, 37: 059001. doi: 10.11884/HPLPB202537.240398
Li Chao, Shi Rui, Zeng Shuxin, et al. Lightweight neural network model for nuclide recognition based on nuclear pulse peak sequence and its FPGA acceleration method[J]. High Power Laser and Particle Beams, 2025, 37: 059001. doi: 10.11884/HPLPB202537.240398
Citation: Li Chao, Shi Rui, Zeng Shuxin, et al. Lightweight neural network model for nuclide recognition based on nuclear pulse peak sequence and its FPGA acceleration method[J]. High Power Laser and Particle Beams, 2025, 37: 059001. doi: 10.11884/HPLPB202537.240398

核脉冲峰值序列轻量化神经网络核素识别模型及其FPGA加速方法

doi: 10.11884/HPLPB202537.240398
基金项目: 国家自然科学基金项目(42074218,42374227); 四川省高等教育人才培养质量和教学改革项目(JG2024-0907); 四川轻化工大学研究生创新基金项目(Y2024251)
详细信息
    作者简介:

    李 超,1214395338@qq.com

    通讯作者:

    石 睿,shirui@suse.edu.cn

  • 中图分类号: TL81

Lightweight neural network model for nuclide recognition based on nuclear pulse peak sequence and its FPGA acceleration method

  • 摘要: 放射性核素已在核医疗、核安保及无损检测等领域中广泛应用,而对其准确识别是放射性核素定性检测的基础。在便携式核素识别仪中,基于传统能谱分析方法存在延迟高、识别率低等不足。提出一种基于核脉冲峰值序列的核素识别轻量化神经网络模型及其FPGA硬件加速方法,通过引入深度可分离卷积和倒残差模块,并使用全局平均池化替代传统全连接层,构建了一种轻量化、高效的神经网络模型。针对网络训练数据集,通过蒙特卡罗工具包Geant4构建NaI(Tl)探测器模型,获取模拟能谱,再由核脉冲信号模拟仿真器根据能谱产生核脉冲信号序列,构建了16种核脉冲信号数据。最后,将训练好的模型通过量化、融合与并行计算等优化方法部署到PYNQ-Z2异构芯片,实现加速。实验结果表明,模型识别精度可达98.3%,相较传统卷积神经网络模型提高了13.2%,参数量仅为2 128。FPGA优化加速后单次识别耗时0.273 ms,功耗为1.94 W。
  • 图  1  探测器建模与模拟能谱图

    Figure  1.  Detector modeling and simulation energy spectrum

    图  2  DT5800D模拟信号流程

    Figure  2.  DT5800D analog signal flow

    图  3  卷积对比与残差模块对比

    Figure  3.  Convolution contrast and residual module contrast

    图  4  神经网络结构图

    Figure  4.  Diagram of neural network structure

    图  5  模型训练过程

    Figure  5.  Model training process

    图  6  测试集混淆矩阵

    Figure  6.  Test set confusion matrix

    图  7  流水线示意图

    Figure  7.  Pipeline diagram

    图  8  分区类型

    Figure  8.  Partition type

    图  9  HLS部分优化伪代码

    Figure  9.  HLS partially optimized pseudocode

    图  10  核素识别系统框图

    Figure  10.  Block diagram of nuclide recognition system

    表  1  模型对比

    Table  1.   Model comparison

    model recognition accuracy/% model parameter model size/kbit
    my model 98.3 2128 25.9
    LSTM 85.3 27536 111
    GhostNet 96.9 1710096 6711
    MobileNet-V1 94.1 2396688 9430
    ResNet-18 93.8 3856912 15151
    VGGNet-16 93.0 34341200 134156
    下载: 导出CSV

    表  2  量化资源消耗与时延

    Table  2.   Quantifying resource consumption and delay

    resource 32 bit float (utilization rate) 16 bit fixed-point number (utilization rate)
    BRAM_18K 240(85%) 79(28%)
    DSP 162(73%) 114(51%)
    FF 46 657(43%) 12 968(12%)
    LUT 51 846(97%) 21 483(40%)
    latency(cycles) 38 101 34 792
    下载: 导出CSV

    表  3  融合前后资源消耗与时延

    Table  3.   Resource consumption and latency before and after fusion

    resource before fusion(utilization rate) after fusion(utilization rate)
    BRAM_18K 252(90%) 240(85%)
    DSP 169(76%) 162(73%)
    FF 51006(47%) 46657(43%)
    LUT 54753(102%) 51846(97%)
    latency(cycles) 47013 38101
    下载: 导出CSV

    表  4  部分优化前后资源消耗与时延

    Table  4.   Resource consumption and delay before and after partial optimization

    resource before optimization (utilization rate) after optimization (utilization rate)
    BRAM_18K 0(0%) 0(0%)
    DSP 4(1%) 32(14%)
    FF 328(~0%) 1 808(1%)
    LUT 427(~0%) 802(1%)
    latency(cycles) 3 208 811
    下载: 导出CSV

    表  5  优化前后资源消耗与时延

    Table  5.   Resource consumption and delay before and after optimization

    resource 16 bit fixed-point number (utilization rate) after-optimization (utilization rate) VIVADO (utilization rate)
    BRAM_18K 79(28%) 109(38%) 95(68%)
    DSP 114(51%) 136(61%) 154(70%)
    FF 12968(12%) 21099(19%) 15372(14%)
    LUT 21483(40%) 39204(73%) 12452(23%)
    latency(cycles) 34792 27334 \
    下载: 导出CSV
  • [1] Likar A, Vidmar T. A peak-search method based on spectrum convolution[J]. Journal of Physics D: Applied Physics, 2003, 36(15): 1903-1909. doi: 10.1088/0022-3727/36/15/323
    [2] Li Xiaozhe, Zhang Qingxian, Tan Heyi, et al. Fast nuclide identification based on a sequential Bayesian method[J]. Nuclear Science and Techniques, 2021, 32: 143. doi: 10.1007/s41365-021-00982-z
    [3] Ling Yongsheng, Huang Tian, Yue Qi, et al. Improving the estimation accuracy of multi-nuclide source term estimation method for severe nuclear accidents using temporal convolutional network optimized by Bayesian optimization and hyperband[J]. Journal of Environmental Radioactivity, 2022, 242: 106787. doi: 10.1016/j.jenvrad.2021.106787
    [4] 张江梅, 任俊松, 李培培, 等. 基于支持向量机的复杂核素能谱识别[J]. 核电子学与探测技术, 2016, 36(8):856-861 doi: 10.3969/j.issn.0258-0934.2016.08.019

    Zhang Jiangmei, Ren Junsong, Li Peipei, et al. Complex radioactive nuclide identification method based on support vector machine[J]. Nuclear Electronics & Detection Technology, 2016, 36(8): 856-861 doi: 10.3969/j.issn.0258-0934.2016.08.019
    [5] El_Tokhy M S. Rapid and robust radioisotopes identification algorithms of X-Ray and gamma spectra[J]. Measurement, 2021, 168: 108456. doi: 10.1016/j.measurement.2020.108456
    [6] 问斯莹, 王百荣, 肖刚, 等. 基于序贯贝叶斯方法的核素识别算法研究[J]. 核电子学与探测技术, 2016, 36(2):179-183 doi: 10.3969/j.issn.0258-0934.2016.02.015

    Wen Siying, Wang Bairong, Xiao Gang, et al. The study on nuclide identification algorithm based on sequential Bayesian analysis[J]. Nuclear Electronics & Detection Technology, 2016, 36(2): 179-183 doi: 10.3969/j.issn.0258-0934.2016.02.015
    [7] Qi Sheng, Zhao Wei, Chen Ye, et al. Comparison of machine learning approaches for radioisotope identification using NaI (TI) gamma-ray spectrum[J]. Applied Radiation and Isotopes, 2022, 186: 110212. doi: 10.1016/j.apradiso.2022.110212
    [8] 胡浩行, 张江梅, 王坤朋, 等. 卷积神经网络在复杂核素识别中的应用[J]. 传感器与微系统, 2019, 38(10):154-156,160

    Hu Haohang, Zhang Jiangmei, Wang Kunpeng, et al. Application of convolutional neural networks in identification of complex nuclides[J]. Transducer and Microsystem Technologies, 2019, 38(10): 154-156,160
    [9] 王瑶, 刘志明, 万亚平, 等. 基于长短时记忆神经网络的能谱核素识别方法[J]. 强激光与粒子束, 2020, 32:106001 doi: 10.11884/HPLPB202032.200118

    Wang Yao, Liu Zhiming, Wan Yaping, et al. Energy spectrum nuclide recognition method based on long short-term memory neural network[J]. High Power Laser and Particle Beams, 2020, 32: 106001 doi: 10.11884/HPLPB202032.200118
    [10] Turner A N, Wheldon C, Wheldon T K, et al. Convolutional neural networks for challenges in automated nuclide identification[J]. Sensors, 2021, 21: 5238. doi: 10.3390/s21155238
    [11] Zhao Wei, Shi Rui, Tuo Xianguo, et al. Novel radionuclides identification method based on Hilbert–Huang Transform and Convolutional Neural Network with gamma-ray pulse signal[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1051: 168232. doi: 10.1016/j.nima.2023.168232
    [12] 张军阳, 王慧丽, 郭阳, 等. 深度学习相关研究综述[J]. 计算机应用研究, 2018, 35(7):1921-1928,1936

    Zhang Junyang, Wang Huili, Guo Yang, et al. Review of deep learning[J]. Application Research of Computers, 2018, 35(7): 1921-1928,1936
    [13] 陈辰, 柴志雷, 夏珺. 基于Zynq7000 FPGA异构平台的YOLOv2加速器设计与实现[J]. 计算机科学与探索, 2019, 13(10):1677-1693

    Chen Chen, Chai Zhilei, Xia Jun. Design and implementation of YOLOv2 accelerator based on Zynq7000 FPGA heterogeneous platform[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(10): 1677-1693
    [14] He Dazhong, He Junhua, Liu Jun, et al. An FPGA-based LSTM acceleration engine for deep learning frameworks[J]. Electronics, 2021, 10: 681. doi: 10.3390/electronics10060681
    [15] Pacini T, Rapuano E, Fanucci L. FPG-AI: a technology-independent framework for the automation of CNN deployment on FPGAs[J]. IEEE Access, 2023, 11: 32759-32775. doi: 10.1109/ACCESS.2023.3263392
    [16] 王博, 石睿, 刘敏俊, 等. 基于FPGA的卷积神经网络核素识别硬件加速方法研究[J]. 核电子学与探测技术, 2024, 44(2):334-343

    Wang Bo, Shi Rui, Liu Minjun, et al. Hardware acceleration method of convolutional neural network nuclide identification algorithm based on FPGA[J]. Nuclear Electronics & Detection Technology, 2024, 44(2): 334-343
    [17] 陈亮. 核素识别算法及数字化能谱采集系统研究[D]. 北京: 清华大学, 2009

    Chen Liang. Research on the nuclide identification algorithm and digital spectra acquisition system[D]. Beijing: Tsinghua University, 2009
    [18] 王军, 冯孙铖, 程勇. 深度学习的轻量化神经网络结构研究综述[J]. 计算机工程, 2021, 47(8):1-13

    Wang Jun, Feng Suncheng, Cheng Yong. Survey of research on lightweight neural network structures for deep learning[J]. Computer Engineering, 2021, 47(8): 1-13
    [19] Howard A G, Zhu Menglong, Chen Bo, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[DB/OL]. arXiv preprint arXiv: 1704.04861, 2017.
    [20] Sandler M, Howard A, Zhu Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 4510-4520.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  41
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-17
  • 修回日期:  2025-02-24
  • 录用日期:  2025-02-24
  • 网络出版日期:  2025-03-13
  • 刊出日期:  2025-03-31

目录

    /

    返回文章
    返回