留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机系统级线缆电磁效应与耦合特征分析

周佳乐 余道杰 柴梦娟 白艺杰 杜剑平 李涛 张霞 姚振宁

周佳乐, 余道杰, 柴梦娟, 等. 无人机系统级线缆电磁效应与耦合特征分析[J]. 强激光与粒子束, 2025, 37: 023001. doi: 10.11884/HPLPB202537.240399
引用本文: 周佳乐, 余道杰, 柴梦娟, 等. 无人机系统级线缆电磁效应与耦合特征分析[J]. 强激光与粒子束, 2025, 37: 023001. doi: 10.11884/HPLPB202537.240399
Zhou Jiale, Yu Daojie, Chai Mengjuan, et al. Analysis of electromagnetic effects and coupling characteristics of UAV system-level cables[J]. High Power Laser and Particle Beams, 2025, 37: 023001. doi: 10.11884/HPLPB202537.240399
Citation: Zhou Jiale, Yu Daojie, Chai Mengjuan, et al. Analysis of electromagnetic effects and coupling characteristics of UAV system-level cables[J]. High Power Laser and Particle Beams, 2025, 37: 023001. doi: 10.11884/HPLPB202537.240399

无人机系统级线缆电磁效应与耦合特征分析

doi: 10.11884/HPLPB202537.240399
基金项目: 国家自然科学基金项目(61871405)
详细信息
    作者简介:

    周佳乐,zjl20242024@163.com

    通讯作者:

    余道杰,yudj2003@163.com

  • 中图分类号: TN972

Analysis of electromagnetic effects and coupling characteristics of UAV system-level cables

  • 摘要: 无人机系统级线缆耦合特征对于无人机电磁效应与机理分析具有重要意义。针对无人机系统中多类型线缆建立了线缆电磁干扰场路联合仿真模型,分析了无人机不同类型线缆的耦合特征,并结合无人机系统复杂物理结构对无人机系统级线缆耦合特征展开研究,基于无人机系统表面电流分布情况,在无人机飞控端口线缆处、机翼线缆处、旋翼线缆处设置电压监测点,得到了无人机系统线缆耦合的薄弱环节。仿真结果表明,平面波以不同角度入射相同长度线缆时,电场矢量与线缆所在平面平行时耦合峰值电压最大,且不同类型线缆耦合敏感频点相同,平面波以相同角度入射不同长度线缆时,谐振频点的倒数满足与线缆长度相同的倍数关系;无人机系统线缆辐照场景下,飞控线缆耦合敏感频段为300~600 MHz;无人机机翼线缆与旋翼线缆耦合敏感频段为300~430 MHz,且飞控线缆耦合峰值电压明显大于机翼线缆与旋翼线缆处峰值电压。
  • 图  1  线缆截面示意图

    Figure  1.  Schematic diagram of cable cross-sections

    图  2  线缆电磁干扰场路联合仿真模型

    Figure  2.  Co-simulation model of electromagnetic interference field of cable

    图  3  无人机线缆场-路耦合模型

    Figure  3.  UAV cable field-line coupling model

    图  4  无人机系统场-路耦合等效电路模型

    Figure  4.  Field-line coupling equivalent circuit model of an unmanned aerial vehicle system

    图  5  线缆端口时域感应电压与入射电磁波角度的关系

    Figure  5.  Relationship between the time-domain induced voltage of a cable port and the angle of the incident electromagnetic wave

    图  6  线缆端口频域感应电压与入射电磁波角度的关系

    Figure  6.  Relationship between the frequency-domain induced voltage of the cable port and the angle of the incident electromagnetic wave

    图  7  线缆端口频域感应电压与线缆长度的关系

    Figure  7.  Relationship between the frequency-domain induced voltage of a cable port and the length of the cable

    图  8  F450无人机仿真模型

    Figure  8.  Simulation model of the F450 UAV

    图  9  无人机系统表面电流分布

    Figure  9.  Surface current distribution of the UAV system

    图  10  电压监测器设置

    Figure  10.  Voltage monitor settings

    图  11  飞控线缆耦合特征

    Figure  11.  Cable coupling feature at flight control

    图  12  机翼线缆处耦合特征

    Figure  12.  Coupling feature at the wing cable

    图  13  旋翼线缆耦合特征

    Figure  13.  Coupling features at the rotor

  • [1] 王涛, 丛佩玺, 石荣荣, 等. 电气线路互联系统线缆抗高空核电磁脉冲耦合效应[J]. 强激光与粒子束, 2021, 33:123009 doi: 10.11884/HPLPB202133.210379

    Wang Tao, Cong Peixi, Shi Rongrong, et al. Coupling effect of high altitude nuclear electromagnetic pulse of electrical wiring interconnection system cable[J]. High Power Laser and Particle Beams, 2021, 33: 123009 doi: 10.11884/HPLPB202133.210379
    [2] Greedy S, Smartt C, Basford M J, et al. Open source cable models for EMI simulations[J]. IEEE Electromagnetic Compatibility Magazine, 2018, 7(3): 69-81.
    [3] 董昱青, 韩玉兵, 高成. 窄带高功率微波对裸露线缆的耦合特性仿真[J]. 现代应用物理, 2023, 14:030504

    Dong Yuqing, Han Yubing, Gao Cheng. Coupling characteristics of exposed cable irradiated by narrow band high power microwave[J]. Modern Applied Physics, 2023, 14: 030504
    [4] 杨茂松, 孙永卫, 潘晓东, 等. 平行双线BCI等效替代强场连续波电磁辐射实验研究[J]. 强激光与粒子束, 2018, 30:093201 doi: 10.11884/HPLPB201830.180078

    Yang Maosong, Sun Yongwei, Pan Xiaodong, et al. Testing technology of using bulk current injection with parallel double line as substitute for high field continuous wave electromagnetic radiation[J]. High Power Laser and Particle Beams, 2018, 30: 093201 doi: 10.11884/HPLPB201830.180078
    [5] 孙江宁, 潘晓东, 卢新福, 等. 非屏蔽多芯线缆耦合通道大电流注入等效试验方法[J]. 电波科学学报, 2022, 37(1):23-32 doi: 10.12265/j.cjors.2021003

    Sun Jiangning, Pan Xiaodong, Lu Xinfu, et al. Bulk current injection equivalent test method for coupling channel of unshielded multi-core wire[J]. Chinese Journal of Radio Science, 2022, 37(1): 23-32 doi: 10.12265/j.cjors.2021003
    [6] 季涛, 罗建书. 电磁耦合实验平台系统线缆束的电磁拓扑分析[J]. 强激光与粒子束, 2014, 26:023201 doi: 10.3788/HPLPB20142602.23201

    Ji Tao, Luo Jianshu. Electromagnetic topology theory and its application to analysis of cables in airplane platform system[J]. High Power Laser and Particle Beams, 2014, 26: 023201 doi: 10.3788/HPLPB20142602.23201
    [7] 刘峻林, 徐荣青. 高空核电磁脉冲与双层损耗土壤下线缆的耦合响应研究[J]. 电子设计工程, 2023, 31(9):99-103,108

    Liu Junlin, Xu Rongqing. The research for the coupling response of HEMP to cable under double-layer lossy soil[J]. Electronic Design Engineering, 2023, 31(9): 99-103,108
    [8] 叶志红, 鲁唱唱, 张玉. 立体弯折线缆线束电磁耦合分析的时域混合算法[J]. 电子与信息学报, 2023, 45(12):4345-4351 doi: 10.11999/JEIT221320

    Ye Zhihong, Lu Changchang, Zhang Yu. Time domain hybrid algorithm for the coupling analysis of harness cable with bent and stereoscopic configurations[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4345-4351 doi: 10.11999/JEIT221320
    [9] Li Xuelian, Du Zhengwei, Li Maokun. Efficient reciprocity-based hybrid approach for analyzing radiated susceptibility responses of multilayer PCBs[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(3): 952-961. doi: 10.1109/TEMC.2016.2631566
    [10] Khan Q M, Koohestani M, Levant J L, et al. Validation of IC conducted emission and immunity models including aging and thermal stress[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(3): 780-793. doi: 10.1109/TEMC.2023.3253385
    [11] 王晓明. 机载综合射频系统高空核电磁脉冲耦合分析与验证[J]. 电波科学学报, 2020, 35(3):325-331

    Wang Xiaoming. Analysis and verification of HEMP coupling of airborne integrated radio frequency system[J]. Chinese Journal of Radio Science, 2020, 35(3): 325-331
    [12] 余道杰, 贺凯, 郭柏森, 等. 无人机定位系统辐照干扰失效全过程与机理分析[J]. 强激光与粒子束, 2023, 35:023002 doi: 10.11884/HPLPB202335.220196

    Yu Daojie, He Kai, Guo Baisen, et al. Failure process and mechanism of irradiation interference in unmanned aerial vehicle positioning system[J]. High Power Laser and Particle Beams, 2023, 35: 023002 doi: 10.11884/HPLPB202335.220196
    [13] 祝挺, 付华芳, 杨国超, 等. 车辆发动机管理系统线缆强电磁脉冲耦合与防护仿真研究[J]. 强激光与粒子束, 2024, 36:043006 doi: 10.11884/HPLPB202436.230327

    Zhu Ting, Fu Huafang, Yang Guochao, et al. Research on cable strong electromagnetic pulse coupling and protection simulation of vehicle engine mangement system[J]. High Power Laser and Particle Beams, 2024, 36: 043006 doi: 10.11884/HPLPB202436.230327
    [14] Guo Shengjie, Wu Linsheng, Tang Min, et al. Analysis of illuminated bent microstrip line based on Baum-Liu-Tesche (BLT) equation[C]//Proceedings of 2015 Electrical Design of Advanced Packaging and Systems Symposium. 2016.
    [15] Mehri M, Masoumi N, Rashed-Mohassel J. Trace orientation function for statistical prediction of PCB radiated susceptibility and emission[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(5): 1168-1178. doi: 10.1109/TEMC.2015.2414353
    [16] 张铁纯, 王育博, 刘明亮, 等. 直升机强电磁脉冲耦合效应研究[J/OL]. 微波学报, 1-8[2025-01-03]. http://kns.cnki.net/kcms/detail/32.1493.TN.20240918.1718.002.html

    Zhang Tiechun, Wang Yubo, Liu Mingliang, et al. A study on the coupling effect of strong electromagnetic pulse on helicopter[J/OL]. Journal of Microwaves, 1-8[2025-01-03]. http://kns.cnki.net/kcms/detail/32.1493.TN.20240918.1718.002.html.
  • 加载中
图(13)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  22
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-18
  • 修回日期:  2025-01-03
  • 录用日期:  2025-01-03
  • 网络出版日期:  2025-01-19
  • 刊出日期:  2025-02-15

目录

    /

    返回文章
    返回