留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近场电爆炸驱动受控核反应及其灵巧型中子源

袁军 张婕 张文宇 叶思隽 魏强 肖堃 潘静 马腾飞 张程

袁军, 张婕, 张文宇, 等. 近场电爆炸驱动受控核反应及其灵巧型中子源[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240401
引用本文: 袁军, 张婕, 张文宇, 等. 近场电爆炸驱动受控核反应及其灵巧型中子源[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240401
Yuan Jun, Zhang Jie, Zhang Wenyu, et al. Nuclear reaction driven by near-field induced electrical explosion and its application in smart neutron source[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240401
Citation: Yuan Jun, Zhang Jie, Zhang Wenyu, et al. Nuclear reaction driven by near-field induced electrical explosion and its application in smart neutron source[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240401

近场电爆炸驱动受控核反应及其灵巧型中子源

doi: 10.11884/HPLPB202537.240401
详细信息
    作者简介:

    袁 军,ken9527@163.com

  • 中图分类号: TL

Nuclear reaction driven by near-field induced electrical explosion and its application in smart neutron source

  • 摘要: 介绍了一种小型化高通量中子源系统的工作原理、组成与构型,系统性地介绍了开发该型中子源系统所需的压电脉冲功率源技术、核反应设计技术、球形电磁场发生技术、粒子近距加速技术、粒子极化与共振对撞技术。研发了完整的中子源实物系统并对其进行能谱和通量测试,实验中观测到了预期的物理现象,通过在线与离线中子测试方法证明了核反应的发生,测试结果显示直径2 cm、长度为4 cm的新式微型中子源的中子辐射通量达到了1010 n/(cm2·s)水平,属于强中子辐射源。
  • 图  1  压电式脉冲功率源电气原理及输出功率与脉宽关系

    Figure  1.  The electrical principle of piezoelectric pulse power source and the relationship between output power and pulse width

    图  2  球形感应场与核反应装置构型

    Figure  2.  Spherical induction field and nuclear reactor configuration

    图  3  电爆炸鞘层场加速原理及质子加速模拟曲线

    Figure  3.  The principle of field acceleration of the sheath of an electric explosion and the simulation curve of proton acceleration

    图  4  等离子体色散特性与极化共振放大效应

    Figure  4.  Plasma dispersion characteristics and polarization resonance amplification effect

    图  5  反应装置与压电式脉冲功率源样机

    Figure  5.  Prototype of reaction device and piezoelectric pulse power source

    图  6  实验系统组成

    Figure  6.  Experimental system composition

    图  7  球形电磁场及球形等离子体光学图像

    Figure  7.  Spherical electromagnetic field and spherical plasma optical image

    图  8  质子群极化过程及回旋共振光谱图像

    Figure  8.  Proton population polarization process and cyclotron resonance spectroscopic image

    图  9  中子能谱曲线

    Figure  9.  Neutron energy spectrum curve

    图  10  中子计数曲线

    Figure  10.  Neutron count curve

    图  11  中子活化及CR39径迹片处理结果

    Figure  11.  Neutron activation and CR39 track chip processing results

    图  12  质子束在锂靶中的穿深SEM(电镜)扫描结果

    Figure  12.  Depth SEM (electron microscopy) scan results of a proton beam in a lithium target

    图  13  反应后对锂靶的XPS检测结果

    Figure  13.  XPS detection results for lithium targets after the reaction

  • [1] Hahn S, Kim K, Kim K, et al. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet[J]. Nature, 2019, 570(7762): 496-499. doi: 10.1038/s41586-019-1293-1
    [2] Lee W, Gheorghe A H, Tiurev K, et al. Synthetic electromagnetic knot in a three-dimensional skyrmion[J]. Science Advances, 2018, 4: eaao3820. doi: 10.1126/sciadv.aao3820
    [3] Macchi A, Borghesi M, Passoni M. Ion acceleration by superintense laser-plasma interaction[J]. Reviews of Modern Physics, 2013, 85(2): 751-793. doi: 10.1103/RevModPhys.85.751
    [4] Ferri J, Siminos E, Fülöp T. Enhanced target normal sheath acceleration using colliding laser pulses[J]. Communications Physics, 2019, 2: 40. doi: 10.1038/s42005-019-0140-x
    [5] Adolph C, Akhunzyanov R, Alexeev M G, et al. Spin alignment and violation of the OZI rule in exclusive ω and φ production in pp collisions[J]. Nuclear Physics B, 2014, 886: 1078-1101. doi: 10.1016/j.nuclphysb.2014.07.020
    [6] Kisamori K, Shimoura S, Miya H, et al. Candidate resonant tetraneutron state populated by the 4He(8He, 8Be) reaction[J]. Physical Review Letters, 2016, 116: 052501. doi: 10.1103/PhysRevLett.116.052501
    [7] 刘翠, 姚向豫, 殷生华, 等. 小型氘-氘脉冲中子发生器优化设计[J]. 核电子学与探测技术, 2024, 44(5):897-901 doi: 10.3969/j.issn.0258-0934.2024.05.016

    Liu Cui, Yao Xiangyu, Yin Shenghua, et al. Optimization design of a small deuterium-deuterium pulse neutron generator[J]. Nuclear Electronics & Detection Techniques, 2024, 44(5): 897-901 doi: 10.3969/j.issn.0258-0934.2024.05.016
    [8] Kondratovich V D, Ostrovsky V N. Resonance and interference phenomena in the photoionisation of a hydrogen atom in a uniform electric field. II. Overlapping resonances and interference[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1984, 17(10): 2011-2038. doi: 10.1088/0022-3700/17/10/008
    [9] Thiele I, Siminos E, Fülöp T. Electron beam driven generation of frequency-tunable isolated relativistic subcycle pulses[J]. Physical Review Letters, 2019, 122: 104803. doi: 10.1103/PhysRevLett.122.104803
    [10] 袁军, 刘平安, 李小雷, 等. 基于磁荷模型的全极化质子对撞结果预测[J]. 凝聚态物理学进展, 2018, 7(2):76-83 doi: 10.12677/CMP.2018.72010

    Yuan Jun, Liu Ping’an, Li Xiaolei, et al. Prediction estimation on the results of totally polarized proton collisions based on magnetic charge model[J]. Advances in Condensed Matter Physics, 2018, 7(2): 76-83 doi: 10.12677/CMP.2018.72010
    [11] 汲长松. 中子探测实验方法[M]. 北京: 原子能出版社, 1998

    Ji Changsong. Experimental methods for neutron detection[M]. Beijing: Atomic Energy Press, 1998
    [12] 孙汉城, 杨春祥. 实验核物理[M]. 哈尔滨: 哈尔滨工程大学出版社, 2014

    Sun Hancheng, Yang Chunxiang. Experimental nuclear physics[M]. Harbin: Harbin Engineering University Press, 2014
  • 加载中
图(13)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-18
  • 修回日期:  2025-03-10
  • 录用日期:  2025-01-21
  • 网络出版日期:  2025-04-29

目录

    /

    返回文章
    返回