留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超宽带简并光参量放大中的寄生效应

李纲 杨雷 黄征 谢娜 卢峰 蒋东镔 周凯南

李纲, 杨雷, 黄征, 等. 超宽带简并光参量放大中的寄生效应[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240407
引用本文: 李纲, 杨雷, 黄征, 等. 超宽带简并光参量放大中的寄生效应[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240407
Li Gang, Yang Lei, Huang Zheng, et al. Parasitic effects in ultra-broadband degenerate optical parametric amplification[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240407
Citation: Li Gang, Yang Lei, Huang Zheng, et al. Parasitic effects in ultra-broadband degenerate optical parametric amplification[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240407

超宽带简并光参量放大中的寄生效应

doi: 10.11884/HPLPB202537.240407
基金项目: 国家重点研发计划(2022YFB3606305)
详细信息
    作者简介:

    李 纲,lgyy0310119@126.com

  • 中图分类号: O437.4

Parasitic effects in ultra-broadband degenerate optical parametric amplification

  • 摘要: 详细研究了在走离补偿及非走离补偿两种方式下,钛宝石(Ti: sapphire)激光倍频泵浦的非共线超宽带简并光参量放大中二次谐波寄生效应的影响。研究表明,在非走离补偿方式下,通过适当增加泵浦光与信号光的非共线角,在确保信号光宽光谱放大的同时,可以有效降低二次谐波寄生效应对信号光输出光谱的影响。获得了不同泵浦光光谱带宽下,简并光参量放大的信号光输出光谱及输出通量演化规律,明确了在给定信号光输出光谱带宽下对泵浦光光谱带宽的要求。研究结果为基于简并光参量放大的超宽带高时域对比度飞秒种子光产生提供设计依据。
  • 图  1  宽带简并光参量放大原理示意图

    Figure  1.  Schematic of the broadband OPA at degeneracy(SHG: second harmonic generation)

    图  2  BBO晶体中两种非共线相位匹配方式

    Figure  2.  Two types of non-collinear phase matching in BBO Crystal

    图  3  BBO晶体第一类相位匹配方式下简并光参量放大及二次谐波相位匹配曲线

    Figure  3.  Phase matching curves for degenerate OPA and SHG in BBO crystal with type I phase matching

    图  4  SLIEX-II激光装置前端ps-OPCPA注入种子光光谱和光参量放大光谱

    Figure  4.  Incident seed spectrum for the ps-OPCPA front-end of the SLIEX-II laser facility, and optical parametric amplified spectrum

    图  5  初始泵浦光及信号光时域波形和光谱

    Figure  5.  Temporal waveforms and spectra of the initial pump and signal

    图  6  忽略信号光与闲频光倍频寄生效应情况下简并光参量放大输出性能

    Figure  6.  Output performance of degenerate optical parametric amplification ignoring the second harmonic parasitic effects of signal and idler

    图  7  走离补偿方式下二次谐波寄生效应对简并光参量放大的影响

    Figure  7.  Impact of second harmonic parasitic effects on degenerate optical parametric amplification with walk-off compensation

    图  8  非走离补偿方式下二次谐波寄生效应对简并光参量放大的影响

    Figure  8.  Impact of second harmonic parasitic effects on degenerate optical parametric amplification with non-walk-off compensation,

    图  9  不同泵浦光光谱带宽下信号光输出光谱、输出通量及光谱宽度

    Figure  9.  Effects of various pump spectral bandwidths on signal output spectrum, and signal output flux and signal spectral width

  • [1] Ledingham K W D, Galster W. Laser-driven particle and photon beams and some applications[J]. New Journal of Physics, 2010, 12: 045005. doi: 10.1088/1367-2630/12/4/045005
    [2] 仲佳勇, 安维明, 平永利, 等. 强激光实验室天体物理介绍[J]. 强激光与粒子束, 2020, 32:092003 doi: 10.11884/HPLPB202032.00123

    Zhong Jiayong, An Weiming, Ping Yongli, et al. Introduction of laboratory astrophysics with intense lasers[J]. High Power Laser and Particle Beams, 2020, 32: 092003 doi: 10.11884/HPLPB202032.00123
    [3] 张高维, 矫金龙, 齐伟, 等. 拍瓦激光与铜靶作用产生光核中子的数值模拟研究[J]. 强激光与粒子束, 2016, 28:102002 doi: 10.11884/HPLPB201628.160102

    Zhang Gaowei, Jiao Jinlong, Qi Wei, et al. Numerical simulation study of photonuclear neutron generation by PW laser[J]. High Power Laser and Particle Beams, 2016, 28: 102002 doi: 10.11884/HPLPB201628.160102
    [4] Bagnoud V, Wagner F. Ultrahigh temporal contrast performance of the PHELIX petawatt facility[J]. High Power Laser Science and Engineering, 2016, 4: e39. doi: 10.1017/hpl.2016.38
    [5] Chvykov V, Rousseau P, Reed S, et al. Generation of 1011 contrast 50 TW laser pulses[J]. Optics Letters, 2006, 31(10): 1456-1458. doi: 10.1364/OL.31.001456
    [6] Itatani J, Faure J, Nantel M, et al. Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection[J]. Optics Communications, 1998, 148(1/3): 70-74.
    [7] Kalashnikov M P, Risse E, Schönnagel H, et al. Double chirped-pulse-amplification laser: a way to clean pulses temporally[J]. Optics Letters, 2005, 30(8): 923-925. doi: 10.1364/OL.30.000923
    [8] Shah R C, Johnson R P, Shimada T, et al. High-temporal contrast using low-gain optical parametric amplification[J]. Optics Letters, 2009, 34(15): 2273-2275. doi: 10.1364/OL.34.002273
    [9] Papadopoulos D N, Ramirez P, Genevrier K, et al. High-contrast 10 fs OPCPA-based front end for multi-PW laser chains[J]. Optics Letters, 2017, 42(18): 3530-3533. doi: 10.1364/OL.42.003530
    [10] Lureau F, Matras G, Chalus O, et al. High-energy hybrid femtosecond laser system demonstrating 2×10 PW capability[J]. High Power Laser Science and Engineering, 2020, 8: e43. doi: 10.1017/hpl.2020.41
    [11] Archipovaite G, Galletti M, Oliveira P, et al. 880 nm, 22 fs, 1 mJ pulses at 100 Hz as an OPCPA front end for Vulcan laser facility[J]. Optics Communications, 2020, 474: 126072. doi: 10.1016/j.optcom.2020.126072
    [12] Bromage J, Bahk S W, Begishev I A, et al. Technology development for ultraintense all-OPCPA systems[J]. High Power Laser Science and Engineering, 2019, 7: e4. doi: 10.1017/hpl.2018.64
    [13] Yoon J W, Lee S K, Yu T J, et al. Broadband, high gain two-stage optical parametric chirped pulse amplifier using BBO crystals for a femtosecond high-power Ti: sapphire laser system[J]. Current Applied Physics, 2012, 12(3): 648-653. doi: 10.1016/j.cap.2011.09.013
    [14] Limpert J, Aguergaray C, Montant S, et al. Ultra-broad bandwidth parametric amplification at degeneracy[J]. Optics Express, 2005, 13(19): 7386-7392. doi: 10.1364/OPEX.13.007386
    [15] Xiao Qi, Pan Xue, Jiang Youen, et al. High-contrast OPCPA front end in high-power petawatt laser facility based on the ps-OPCPA seed system[J]. Optics Express, 2021, 29(11): 15980-15994. doi: 10.1364/OE.425420
    [16] Klingebiel S. Picosecond pump dispersion management and jitter stabilization in a petawatt-scale few-cycle OPCPA system[D]. Munich: Ludwig-Maximilians-Universität München, 2013.
    [17] 李纲, 郭仪, 曾小明, 等. 皮秒短脉冲光参量啁啾脉冲放大中泵浦信号高精度同步主动控制技术研究[J]. 物理学报, 2022, 71:074203 doi: 10.7498/aps.71.20211961

    Li Gang, Guo Yi, Zeng Xiaoming, et al. Investigation of active pump-signal synchronization technique for a ps-pulse pumped OPCPA[J]. Acta Physica Sinica, 2022, 71: 074203 doi: 10.7498/aps.71.20211961
    [18] 杨帅帅, 滕浩, 何鹏, 等. 基于大基模体积的10 mJ飞秒钛宝石激光再生放大器[J]. 物理学报, 2017, 66:104209 doi: 10.7498/aps.66.104209

    Yang Shuaishuai, Teng Hao, He Peng, et al. 10 mJ femtosecond Ti: sapphire regenerative amplifier with large mode size[J]. Acta Physica Sinica, 2017, 66: 104209 doi: 10.7498/aps.66.104209
    [19] Aguergaray C, Schmidt O, Rothhardt J, et al. Ultra-wide parametric amplification at 800 nm toward octave spanning[J]. Optics Express, 2009, 17(7): 5153-5162. doi: 10.1364/OE.17.005153
    [20] Moses J, Manzoni C, Huang Shuwei, et al. Temporal optimization of ultrabroadband high-energy OPCPA[J]. Optics Express, 2009, 17(7): 5540-5555. doi: 10.1364/OE.17.005540
    [21] Bromage J, Rothhardt J, Hädrich S, et al. Analysis and suppression of parasitic processes in noncollinear optical parametric amplifiers[J]. Optics Express, 2011, 19(18): 16797-16808. doi: 10.1364/OE.19.016797
    [22] Ross I N, Matousek P, New G H C, et al. Analysis and optimization of optical parametric chirped pulse amplification[J]. Journal of the Optical Society of America B, 2002, 19(12): 2945-2956. doi: 10.1364/JOSAB.19.002945
    [23] Eimerl D, Davis L, Velsko S, et al. Optical, mechanical, and thermal properties of barium borate[J]. Journal of Applied Physics, 1987, 62(5): 1968-1983. doi: 10.1063/1.339536
    [24] Flemens N, Swenson N, Moses J. Efficient parametric amplification via simultaneous second harmonic generation[J]. Optics Express, 2021, 29(19): 30590-30609. doi: 10.1364/OE.437864
    [25] Fischer P, Muschet A, Lang T, et al. Saturation control of an optical parametric chirped-pulse amplifier[J]. Optics Express, 2021, 29(3): 4210-4218. doi: 10.1364/OE.415564
  • 加载中
图(9)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-27
  • 修回日期:  2025-04-06
  • 录用日期:  2025-03-24
  • 网络出版日期:  2025-04-27

目录

    /

    返回文章
    返回