Influence of bound nuclear effects on thermal neutron activation
-
摘要: 在地表核泄漏场景下,辐射中子与物质中原子核经过多次散射后,能量很快降低到只有几个电子伏的热中子能区,热中子的活化将对核反应过程产生强烈影响。在固体、液体材料中,原子核通常以束缚态核的形式存在,在与物质相互作用反应方面,束缚核与气态的自由核不同。为更准确地评估核辐射效应,本文研究了束缚核效应对热中子活化过程的影响。使用蒙特卡罗方法模拟粒子输运,基于地表核辐射的场景建立了相应的空地界面模型,模拟了核辐射中子束入射土壤、海水以及混凝土产生的一系列核反应。以热中子的活化反应为重点,通过替换入射中子在介质中的反应截面引入束缚核效应,计算并对比了考虑束缚核效应影响前后活化产物次级γ的注量变化。研究结果表明,在活化过程中考虑束缚核效应的影响,能够使固液介质的热中子活化强度出现明显增强,从而在一定程度上增强地表次级γ场的辐射强度。由于元素组成、粒子屏蔽能力等因素的综合作用,三种介质场景下次级γ注量的最高涨幅分别为18%,8%和11%,涨幅随探测距离的变化规律也有所差异。Abstract: In a surface nuclear leakage scenario, radiation neutrons undergo multiple scatterings with atomic nuclei in the material, rapidly reducing their energy to the thermal neutron range (a few eV). The activation of thermal neutrons significantly impacts the nuclear reaction process. In solid and liquid materials, nuclei typically exist in bound states, differing from free nuclei in gaseous form regarding their interaction with matter. To accurately assess nuclear radiation effects, this study investigates the impact of bound-nucleus effects on thermal neutron activation. Using the Monte Carlo method for particle transport simulation, an air-ground interface model was developed based on surface nuclear radiation scenarios. The study modeled neutron beam interactions with soil, seawater, and concrete, focusing on thermal neutron activation reactions. By incorporating bound-nucleus effects through adjusted reaction cross-sections, the study calculated and compared changes in secondary gamma flux before and after considering these effects. The results show that accounting for bound-nucleus effects enhances thermal neutron activation in solid and liquid media, thereby increasing surface secondary gamma field intensity. Due to factors such as elemental composition and particle shielding, the maximum increases in secondary gamma flux were 18%, 8%, and 11% for the three media, with varying patterns of flux increase over detection distances.
-
表 1 土壤元素构成
Table 1. Element composition of soil
element mass fractions atom fractions H 0.023834 0.316843 O 0.598899 0.501587 Al 0.080446 0.039952 Si 0.296821 0.141618 表 2 海水元素构成
Table 2. Element composition of sea water
element mass fractions atom fractions H 0.107974 0.661583 O 0.858766 0.331501 Na 0.010785 0.002897 Mg 0.001284 0.000326 S 0.000906 0.000174 Cl 0.019471 0.003392 K 0.000399 0.000064 Ca 0.000415 0.000064 表 3 混凝土元素构成
Table 3. Element composition of concrete
element mass fractions atom fractions H 0.004000 0.078437 O 0.482102 0.595591 Na 0.002168 0.001864 Mg 0.014094 0.011462 Al 0.069387 0.050830 Si 0.277549 0.195334 K 0.013010 0.006577 Ca 0.080229 0.039567 Fe 0.057461 0.020338 -
[1] Glasstone S, Dolan P J. The effects of nuclear weapons[M]. 3rd ed. Washington: Department of Defense & Department of Energy, 1977: 3-10. [2] 刘晓红, 王伟力, 孟涛, 等. 早期核辐射毁伤效应空间建模及剖切算法[J]. 火力与指挥控制, 2012, 37(9):190-192,197Liu Xiaohong, Wang Weili, Meng Tao, et al. Research on 3D spatial data models for early nuclear radiation damage effects and slitting algorithm[J]. Fire Control & Command Control, 2012, 37(9): 190-192,197 [3] Khasanov S, Yang Bo, Su Youwu, et al. Induced radioactivity at particle accelerators: a short review[J]. Radiation Detection Technology and Methods, 2021, 5(4): 481-492. doi: 10.1007/s41605-021-00292-3 [4] 王韬, 庞建, 赵良超, 等. 回旋加速器束测探头感生放射性实验研究[J]. 强激光与粒子束, 2013, 25(7):1779-1782Wang Tao, Pang Jian, Zhao Liangchao, et al. Experimental investigation on induced radioactivity in beam probe for compact cyclotron[J]. High Power Laser and Particle Beams, 2013, 25(7): 1779-1782 [5] 邹士亚, 张文仲, 毛用泽. 中子弹核爆炸战场目标毁伤效应数学模型[J]. 核电子学与探测技术, 2006, 26(2):132-136Zou Shiya, Zhang Wenzhong, Mao Yongze. The damage effect math-model of field objects for neutron bomb nuclear explosion[J]. Nuclear Electronics & Detection Technology, 2006, 26(2): 132-136 [6] 商鹏, 黄流兴, 牛胜利, 等. 核爆炸地面感生放射性辐射环境的蒙特卡罗模拟[J]. 现代应用物理, 2022, 13:010201Shang Peng, Huang Liuxing, Niu Shengli, et al. Monte Carlo simulation of ground environment of induced radioactivity radiation produced by neutrons of nuclear explosion[J]. Modern Applied Physics, 2022, 13: 010201 [7] 赵健. GTAF装置数字化数据获取系统的研究[D]. 衡阳: 南华大学, 2013: 1-8Zhao Jian. The study of digital data acquisition system on GTAF[D]. Hengyang: University of South China, 2013: 1-8 [8] 张奇玮, 贺国珠, 栾广源, 等. 基于HI-13串列加速器的中子俘获反应截面测量方法[J]. 强激光与粒子束, 2021, 33:046001Zhang Qiwei, He Guozhu, Luan Guangyuan, et al. Cross section measurement of neutron capture reaction based on HI-13 tandem accelerator[J]. High Power Laser and Particle Beams, 2021, 33: 046001 [9] 陈朝斌, 陈义学, 胡泽华, 等. MCNP程序用热中子散射数据制作和检验[J]. 原子能科学技术, 2010, 44(11):1335-1340Chen Chaobin, Chen Yixue, Hu Zehua, et al. Generating and validation of thermal neutron scattering library for MCNP[J]. Atomic Energy Science and Technology, 2010, 44(11): 1335-1340 [10] 姚永刚, 肖才锦, 王平生, 等. 嫦娥五号月壤中子活化分析研究[J]. 同位素, 2022, 35(1):70-74Yao Yonggang, Xiao Caijin, Wang Pingsheng, et al. Instrumental neutron activation analysis for lunar samples returned by Chang'E-5[J]. Journal of Isotopes, 2022, 35(1): 70-74 [11] Massoud A, Abdou F S, Yousif M. Evaluation of mineral compositions of surface and subsurface rock samples by neutron activation analysis[J]. International Journal of Environmental Analytical Chemistry, 2023, 103(3): 528-545. [12] 王兴华, 孙洪超, 姚永刚, 等. PGNAA方法学的发展与现状[J]. 同位素, 2014, 27(4):251-256Wang Xinghua, Sun Hongchao, Yao Yonggang, et al. Development and status of Prompt Gamma Neutron Activation Analysis technique methodology[J]. Journal of Isotopes, 2014, 27(4): 251-256 [13] 耿书群. 基于热中子的瞬发伽马射线活化成像技术的模拟研究[D]. 南京: 南京航空航天大学, 2018: 13-14Geng Shuqun. Simulation study of prompt gamma activation imaging technology based on the thermal neutron[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 13-14 [14] Younous K, El Kafhali M, Bouadel I, et al. Efficacy and safety of boron neutron capture therapy: a systematic review[J]. International Journal of Radiation Biology, 2024, 100(12): 1611-1621. doi: 10.1080/09553002.2024.2413583 [15] Goorley J T, Kiger III W S, Zamenhof R G. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models[J]. Medical Physics, 2002, 29(2): 145-156. doi: 10.1118/1.1428758 [16] 王武, 夏虹, 李伟, 等. 基于MCNP的反应堆建模方法[J]. 应用科技, 2021, 48(4):92-97Wang Wu, Xia Hong, Li Wei, et al. Reactor physical modeling method based on MCNP[J]. Applied Science and Technology, 2021, 48(4): 92-97 [17] 钟兆鹏, 施工, 胡永明. MCNP程序在反应堆临界计算中的应用[J]. 核动力工程, 2003, 24(1):8-11Zhong Zhaopeng, Shi Gong, Hu Yongming. Application of MCNP in the criticality calculation for reactors[J]. Nuclear Power Engineering, 2003, 24(1): 8-11 [18] National Nuclear Data Center. Evaluated nuclear data file (ENDF)[EB/OL]. Brookhaven National Laboratory. (2024-08-30). https://www.nndc.bnl.gov/endf/. [19] 邱有恒, 邓力, 李百文, 等. 几种重要性函数在粒子输运蒙特卡罗模拟中的应用[J]. 原子能科学技术, 2013, 47(s1):673-677Qiu Youheng, Deng Li, Li Baiwen, et al. Application of several important functions on Monte Carlo simulation of particle transport[J]. Atomic Energy Science and Technology, 2013, 47(s1): 673-677 [20] 郭思禹, 程引会, 郭俊. 无风条件下近地爆烟尘的大气γ电离辐射环境模拟[J]. 强激光与粒子束, 2024, 36:043027Guo Siyu, Cheng Yinhui, Guo Jun. Simulation of atmospheric γ ionizing radiation environment of near-ground nuclear explosion fallout under windless conditions[J]. High Power Laser and Particle Beams, 2024, 36: 043027 [21] Holmes R L, White S W. Standardized unclassified little boy and fat man outputs[R]. Defense Threat Reduction Agency, 2013. -