留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

束缚核效应对热中子活化的影响

郭志铭 郝建红 张芳 赵强 范杰清 董志伟

郭志铭, 郝建红, 张芳, 等. 束缚核效应对热中子活化的影响[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240408
引用本文: 郭志铭, 郝建红, 张芳, 等. 束缚核效应对热中子活化的影响[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240408
Guo Zhiming, Hao Jianhong, Zhang Fang, et al. Influence of bound nuclear effects on thermal neutron activation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240408
Citation: Guo Zhiming, Hao Jianhong, Zhang Fang, et al. Influence of bound nuclear effects on thermal neutron activation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240408

束缚核效应对热中子活化的影响

doi: 10.11884/HPLPB202537.240408
基金项目: 国家自然科学基金项目(12205024)
详细信息
    作者简介:

    郭志铭,1274361086@qq.com

    通讯作者:

    张 芳,fangzhang328@163.com

  • 中图分类号: TL91;TL929

Influence of bound nuclear effects on thermal neutron activation

  • 摘要: 在地表核泄漏场景下,辐射中子与物质中原子核经过多次散射后,能量很快降低到只有几个电子伏的热中子能区,热中子的活化将对核反应过程产生强烈影响。在固体、液体材料中,原子核通常以束缚态核的形式存在,在与物质相互作用反应方面,束缚核与气态的自由核不同。为更准确地评估核辐射效应,本文研究了束缚核效应对热中子活化过程的影响。使用蒙特卡罗方法模拟粒子输运,基于地表核辐射的场景建立了相应的空地界面模型,模拟了核辐射中子束入射土壤、海水以及混凝土产生的一系列核反应。以热中子的活化反应为重点,通过替换入射中子在介质中的反应截面引入束缚核效应,计算并对比了考虑束缚核效应影响前后活化产物次级γ的注量变化。研究结果表明,在活化过程中考虑束缚核效应的影响,能够使固液介质的热中子活化强度出现明显增强,从而在一定程度上增强地表次级γ场的辐射强度。由于元素组成、粒子屏蔽能力等因素的综合作用,三种介质场景下次级γ注量的最高涨幅分别为18%,8%和11%,涨幅随探测距离的变化规律也有所差异。
  • 图  1  O和Si的中子俘获截面

    Figure  1.  Neutron capture cross-section of oxygen and silicon

    图  2  截断组与对照组的γ通量对比

    Figure  2.  Comparison of γ-flux between the truncated group and the control group

    图  3  地表核辐射场景3D几何模型

    Figure  3.  Surface nuclear radiation scene 3D geometric model

    图  4  地表核辐射场景模型竖切面示意图

    Figure  4.  Vertical cross-sectional diagram of surface nuclear radiation scene model

    图  5  中子源能谱

    Figure  5.  Neutron source energy spectrum

    图  6  探测环俯视结构(左)及横截面(右)示意图

    Figure  6.  Schematic diagram of the top view structure (left) and cross-section (right) of the annular detector

    图  7  地表次级γ注量比较

    Figure  7.  Comparison of secondary γ-ray dose rates at the Earth’s surface

    图  8  海面次级γ注量比较

    Figure  8.  Comparison of secondary γ-ray dose rates at the sea surface

    图  9  混凝土表面次级γ注量比较

    Figure  9.  Comparison of secondary γ-ray dose rates at the surface of concrete

    表  1  土壤元素构成

    Table  1.   Element composition of soil

    elementmass fractionsatom fractions
    H0.0238340.316843
    O0.5988990.501587
    Al0.0804460.039952
    Si0.2968210.141618
    下载: 导出CSV

    表  2  海水元素构成

    Table  2.   Element composition of sea water

    element mass fractions atom fractions
    H 0.107974 0.661583
    O 0.858766 0.331501
    Na 0.010785 0.002897
    Mg 0.001284 0.000326
    S 0.000906 0.000174
    Cl 0.019471 0.003392
    K 0.000399 0.000064
    Ca 0.000415 0.000064
    下载: 导出CSV

    表  3  混凝土元素构成

    Table  3.   Element composition of concrete

    element mass fractions atom fractions
    H 0.004000 0.078437
    O 0.482102 0.595591
    Na 0.002168 0.001864
    Mg 0.014094 0.011462
    Al 0.069387 0.050830
    Si 0.277549 0.195334
    K 0.013010 0.006577
    Ca 0.080229 0.039567
    Fe 0.057461 0.020338
    下载: 导出CSV
  • [1] Glasstone S, Dolan P J. The effects of nuclear weapons[M]. 3rd ed. Washington: Department of Defense & Department of Energy, 1977: 3-10.
    [2] 刘晓红, 王伟力, 孟涛, 等. 早期核辐射毁伤效应空间建模及剖切算法[J]. 火力与指挥控制, 2012, 37(9):190-192,197

    Liu Xiaohong, Wang Weili, Meng Tao, et al. Research on 3D spatial data models for early nuclear radiation damage effects and slitting algorithm[J]. Fire Control & Command Control, 2012, 37(9): 190-192,197
    [3] Khasanov S, Yang Bo, Su Youwu, et al. Induced radioactivity at particle accelerators: a short review[J]. Radiation Detection Technology and Methods, 2021, 5(4): 481-492. doi: 10.1007/s41605-021-00292-3
    [4] 王韬, 庞建, 赵良超, 等. 回旋加速器束测探头感生放射性实验研究[J]. 强激光与粒子束, 2013, 25(7):1779-1782

    Wang Tao, Pang Jian, Zhao Liangchao, et al. Experimental investigation on induced radioactivity in beam probe for compact cyclotron[J]. High Power Laser and Particle Beams, 2013, 25(7): 1779-1782
    [5] 邹士亚, 张文仲, 毛用泽. 中子弹核爆炸战场目标毁伤效应数学模型[J]. 核电子学与探测技术, 2006, 26(2):132-136

    Zou Shiya, Zhang Wenzhong, Mao Yongze. The damage effect math-model of field objects for neutron bomb nuclear explosion[J]. Nuclear Electronics & Detection Technology, 2006, 26(2): 132-136
    [6] 商鹏, 黄流兴, 牛胜利, 等. 核爆炸地面感生放射性辐射环境的蒙特卡罗模拟[J]. 现代应用物理, 2022, 13:010201

    Shang Peng, Huang Liuxing, Niu Shengli, et al. Monte Carlo simulation of ground environment of induced radioactivity radiation produced by neutrons of nuclear explosion[J]. Modern Applied Physics, 2022, 13: 010201
    [7] 赵健. GTAF装置数字化数据获取系统的研究[D]. 衡阳: 南华大学, 2013: 1-8

    Zhao Jian. The study of digital data acquisition system on GTAF[D]. Hengyang: University of South China, 2013: 1-8
    [8] 张奇玮, 贺国珠, 栾广源, 等. 基于HI-13串列加速器的中子俘获反应截面测量方法[J]. 强激光与粒子束, 2021, 33:046001

    Zhang Qiwei, He Guozhu, Luan Guangyuan, et al. Cross section measurement of neutron capture reaction based on HI-13 tandem accelerator[J]. High Power Laser and Particle Beams, 2021, 33: 046001
    [9] 陈朝斌, 陈义学, 胡泽华, 等. MCNP程序用热中子散射数据制作和检验[J]. 原子能科学技术, 2010, 44(11):1335-1340

    Chen Chaobin, Chen Yixue, Hu Zehua, et al. Generating and validation of thermal neutron scattering library for MCNP[J]. Atomic Energy Science and Technology, 2010, 44(11): 1335-1340
    [10] 姚永刚, 肖才锦, 王平生, 等. 嫦娥五号月壤中子活化分析研究[J]. 同位素, 2022, 35(1):70-74

    Yao Yonggang, Xiao Caijin, Wang Pingsheng, et al. Instrumental neutron activation analysis for lunar samples returned by Chang'E-5[J]. Journal of Isotopes, 2022, 35(1): 70-74
    [11] Massoud A, Abdou F S, Yousif M. Evaluation of mineral compositions of surface and subsurface rock samples by neutron activation analysis[J]. International Journal of Environmental Analytical Chemistry, 2023, 103(3): 528-545.
    [12] 王兴华, 孙洪超, 姚永刚, 等. PGNAA方法学的发展与现状[J]. 同位素, 2014, 27(4):251-256

    Wang Xinghua, Sun Hongchao, Yao Yonggang, et al. Development and status of Prompt Gamma Neutron Activation Analysis technique methodology[J]. Journal of Isotopes, 2014, 27(4): 251-256
    [13] 耿书群. 基于热中子的瞬发伽马射线活化成像技术的模拟研究[D]. 南京: 南京航空航天大学, 2018: 13-14

    Geng Shuqun. Simulation study of prompt gamma activation imaging technology based on the thermal neutron[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 13-14
    [14] Younous K, El Kafhali M, Bouadel I, et al. Efficacy and safety of boron neutron capture therapy: a systematic review[J]. International Journal of Radiation Biology, 2024, 100(12): 1611-1621. doi: 10.1080/09553002.2024.2413583
    [15] Goorley J T, Kiger III W S, Zamenhof R G. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models[J]. Medical Physics, 2002, 29(2): 145-156. doi: 10.1118/1.1428758
    [16] 王武, 夏虹, 李伟, 等. 基于MCNP的反应堆建模方法[J]. 应用科技, 2021, 48(4):92-97

    Wang Wu, Xia Hong, Li Wei, et al. Reactor physical modeling method based on MCNP[J]. Applied Science and Technology, 2021, 48(4): 92-97
    [17] 钟兆鹏, 施工, 胡永明. MCNP程序在反应堆临界计算中的应用[J]. 核动力工程, 2003, 24(1):8-11

    Zhong Zhaopeng, Shi Gong, Hu Yongming. Application of MCNP in the criticality calculation for reactors[J]. Nuclear Power Engineering, 2003, 24(1): 8-11
    [18] National Nuclear Data Center. Evaluated nuclear data file (ENDF)[EB/OL]. Brookhaven National Laboratory. (2024-08-30). https://www.nndc.bnl.gov/endf/.
    [19] 邱有恒, 邓力, 李百文, 等. 几种重要性函数在粒子输运蒙特卡罗模拟中的应用[J]. 原子能科学技术, 2013, 47(s1):673-677

    Qiu Youheng, Deng Li, Li Baiwen, et al. Application of several important functions on Monte Carlo simulation of particle transport[J]. Atomic Energy Science and Technology, 2013, 47(s1): 673-677
    [20] 郭思禹, 程引会, 郭俊. 无风条件下近地爆烟尘的大气γ电离辐射环境模拟[J]. 强激光与粒子束, 2024, 36:043027

    Guo Siyu, Cheng Yinhui, Guo Jun. Simulation of atmospheric γ ionizing radiation environment of near-ground nuclear explosion fallout under windless conditions[J]. High Power Laser and Particle Beams, 2024, 36: 043027
    [21] Holmes R L, White S W. Standardized unclassified little boy and fat man outputs[R]. Defense Threat Reduction Agency, 2013.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  26
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-30
  • 修回日期:  2025-03-19
  • 录用日期:  2025-03-06
  • 网络出版日期:  2025-04-07

目录

    /

    返回文章
    返回