留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可变电容的X波段高功率宽频带波束扫描反射阵列天线设计

张炀 李相强 张健穹 王庆峰 唐先锋

张炀, 李相强, 张健穹, 等. 基于可变电容的X波段高功率宽频带波束扫描反射阵列天线设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240411
引用本文: 张炀, 李相强, 张健穹, 等. 基于可变电容的X波段高功率宽频带波束扫描反射阵列天线设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240411
Zhang Yang, Li Xiangqiang, Zhang Jianqiong, et al. Design of X-band high power wide tuning bandwidth electronically beam scanning reflectarray antenna based on varactor[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240411
Citation: Zhang Yang, Li Xiangqiang, Zhang Jianqiong, et al. Design of X-band high power wide tuning bandwidth electronically beam scanning reflectarray antenna based on varactor[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240411

基于可变电容的X波段高功率宽频带波束扫描反射阵列天线设计

doi: 10.11884/HPLPB202537.240411
基金项目: 四川省科技厅重点研发项目(2022YFG0248);国家自然科学基金项目(62301459)
详细信息
    作者简介:

    张 炀,zhangyang_0626@163.com

    通讯作者:

    李相强,xiangqiang_li@swjtu.edu.cn

  • 中图分类号: O53

Design of X-band high power wide tuning bandwidth electronically beam scanning reflectarray antenna based on varactor

  • 摘要: 针对高功率微波系统宽频带和波束扫描需求,提出并设计了一种基于可变电容的X波段高功率宽频带波束扫描反射阵列天线。天线采用线极化喇叭馈源和三明治介质埋藏式贴片单元,其中贴片部分为嵌套式双谐振结构集成可变电容,同步拓宽相位调节范围(360°)与工作带宽。通过消除单元突变结构并采用三明治介质层,有效抑制了三相点产生,使功率容量提升至5 MW(1个大气压SF6环境)。调节可变电容容值可实现8.55-9.65 GHz频段内12%相对调谐带宽。基于11×11矩形栅格的反射阵仿真表明:242 mm口径阵列天线最大增益25.12 dBi,口径效率54.39%,全频带支持0°~20°波束扫描。相较于现有技术,该设计在调谐带宽(12%)和功率容量(5 MW)方面具有优势,为高功率微波系统的宽频带波束控制提供了有效途径。
  • 图  1  单元结构图

    Figure  1.  Structure of the proposed element

    图  2  单元的幅相响应

    Figure  2.  Amplitude response and phase response of the proposed element

    图  3  单元表面电场强度对比

    Figure  3.  Comparison of E-field on the proposed element

    图  4  天线驻波比

    Figure  4.  VSWR of antenna

    图  5  天线方向图

    Figure  5.  Antenna radiation pattren

    图  6  阵列天线电场分布

    Figure  6.  E-field of reflectarray

    表  1  单元结构参数

    Table  1.   Parameters of the proposed element mm

    L1 L2 L3 L4 L5 W1 W2 W3 W4 W5
    21.6 18.1 4.3 9 2.4 8.5 2.7 3.9 1 1
    下载: 导出CSV

    表  2  天线阵列辐射性能仿真结果

    Table  2.   Simulation results of antenna array radiation performance

    frequency/(GHz) maximum beam scanning angle/(°) maximum gain/(dBi) maximum aperture efficiency/%
    8.55 30 25.12 54.39
    8.8 30 24.94 49.25
    9.1 25 25.19 48.79
    9.4 25 24.62 40.11
    9.65 20 24.29 35.27
    下载: 导出CSV

    表  3  最大场强仿真结果

    Table  3.   Simulation results of maximum E-field

    frequency/
    (GHz)
    E-field of reflectarray
    surface/(V·m−1)
    power capacity of
    reflectarray surface/(MW)
    E-field of
    patch/(V·m−1)
    power capacity
    of patch/(MW)
    8.55 1812 36.85 16090 6.18
    8.8 1828 36.21 16565 5.83
    9.1 1844 35.58 17006 5.53
    9.4 1920 32.82 17153 5.44
    9.65 2241 24.09 17870 5.01
    下载: 导出CSV

    表  4  与文献结果对比

    Table  4.   Compared with the results in Ref

    maximum reflection loss/(dB) phase coverage/(°) maximum electric field /(V·m−1) relative tuning bandwidth/%
    Ref.[19] −3.1 318 6.14×105 3
    Ref.[21] −2.2 304 5.84×105 2.4
    Ref.[25] −0.66 270 1.54×105 3
    This paper −0.51 360 1.62×104 12
    下载: 导出CSV
  • [1] Courtney C C, Baum C E. The coaxial beamrotating antenna (COBRA): theory of operation and measured performance[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(2): 299-309. doi: 10.1109/8.833080
    [2] Eisenhart R L. A novel wideband TM01-TE11 mode converter[J]. IEEE Transactions on Microwave Theory and Techniques, 1988, 1(11): 249-252.
    [3] Vlasov S N, Orlova l M. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into a highly directional wave beam[J]. Radiophysics and Quantum Electronics, 1974, 17(1): 115-119. doi: 10.1007/BF01037072
    [4] 赵旭浩, 毕绍锋, 张建德, 等. 伸缩式全金属反射阵列扫描天线[J]. 强激光与粒子束, 2022, 34:043004

    Zhao Xuhao, Bi Shaofeng, Zhang Jiande, et al. Scalable all-metal reflective array beam scanning antenna[J]. High Power Laser and Particle Beams, 2022, 34: 043004
    [5] Campbell S D, Mackertich-Sengerdy G, Daniel Binion J, et al. Metamaterial-enabled reflectarray antennas for high-power microwave applications[C]//Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. 2020: 651-652.
    [6] Liang Yuan, Zhang Jianqiong, Liu Qingxiang, et al. High-power radial-line helical subarray for high-frequency applications[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(8): 4034-4041. doi: 10.1109/TAP.2018.2840840
    [7] 许亮, 张强, 袁成卫, 等. 一种旋转移相式高功率微波反射阵列天线[J]. 强激光与粒子束, 2024, 36:013002 doi: 10.11884/HPLPB202436.230379

    Xu Liang, Zhang Qiang, Yuan Chengwei, et al. A high-power microwave reflectarray antenna based on variable rotation technique[J]. High Power Laser and Particle Beams, 2024, 36: 013002 doi: 10.11884/HPLPB202436.230379
    [8] 张治强, 赵加宁, 李芳, 等. 宽带Ka波段平面反射阵列天线设计[J]. 强激光与粒子束, 2022, 34:083001 doi: 10.11884/HPLPB202234.220037

    Zhang Zhiqiang, Zhao Jianing, Li Fang, et al. Design of a broadband Ka-band reflectarray antenna[J]. High Power Laser and Particle Beams, 2022, 34: 083001 doi: 10.11884/HPLPB202234.220037
    [9] Guo Letian, Huang Wenhua, Chang Chao, et al. Studies of a leaky-wave phased array antenna for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2366-2375. doi: 10.1109/TPS.2016.2601105
    [10] Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal beam steering lens antenna for high power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7340-7344.
    [11] Bi Shaofeng, Xu Liang, Cheng Xiaoyu, et al. An all-metal, simple-structured reflectarray antenna with 2-D beam-steerable capability[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(1): 129-133. doi: 10.1109/LAWP.2022.3204617
    [12] Hum S V, Perruisseau-Carrier J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 183-198. doi: 10.1109/TAP.2013.2287296
    [13] Nayeri P, Yang F, Elsherbeni A Z. Beam-scanning reflectarray antennas: a technical overview and state of the art[J]. IEEE Antennas and Propagation Magazine, 2015, 57(4): 32-47. doi: 10.1109/MAP.2015.2453883
    [14] Perez-Palomino G, Barba M, Encinar J A, et al. Design and demonstration of an electronically scanned reflectarray antenna at 100 GHz using multiresonant cells based on liquid crystals[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8): 3722-3727. doi: 10.1109/TAP.2015.2434421
    [15] Yang Jun, Chu Xiujun, Gao Haoyu, et al. Fully electronically phase modulation of millimeter-wave via comb electrodes and liquid crystal[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(3): 342-345. doi: 10.1109/LAWP.2021.3049870
    [16] Yang Xue, Xu Shenheng, Yang Fan, et al. A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 3959-3966. doi: 10.1109/TAP.2017.2708079
    [17] Perruisseau-Carrier J, Skrivervik A K. Monolithic MEMS-based reflectarray cell digitally reconfigurable over a 360° phase range[J]. IEEE Antennas and Wireless Propagation Letters, 2008, 7: 138-141. doi: 10.1109/LAWP.2008.919327
    [18] Carrasco E, Barba M, Encinar J A. X-band reflectarray antenna with switching-beam using PIN diodes and gathered elements[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(12): 5700-5708. doi: 10.1109/TAP.2012.2208612
    [19] Costanzo S, Venneri F, Raffo A, et al. Dual-layer single-varactor driven reflectarray cell for broad-band beam-steering and frequency tunable applications[J]. IEEE Access, 2018, 6: 71793-71800. doi: 10.1109/ACCESS.2018.2882093
    [20] Kamoda H, Iwasaki T, Tsumochi J, et al. 60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(7): 2524-2531. doi: 10.1109/TAP.2011.2152338
    [21] Liu Chang, Hum S V. An electronically tunable single-layer reflectarray antenna element with improved bandwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 1241-1244. doi: 10.1109/LAWP.2011.2104934
    [22] Trampler M E, Gong Xu. Phase-agile dual-resonance single linearly polarized antenna element for reconfigurable reflectarray applications[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(6): 3752-3761. doi: 10.1109/TAP.2019.2908041
    [23] Trampler M E, Lovato R E, Gong Xu. Dual-resonance continuously beam-scanning X-band reflectarray antenna[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(8): 6080-6087. doi: 10.1109/TAP.2020.2989559
    [24] Li Xiangqiang, Zhou Zhe, Wang Qingfeng, et al. A polarization conversion radome for high-power microwave applications[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(6): 1096-1099. doi: 10.1109/LAWP.2019.2909062
    [25] Gregory M D, Bossard J A, Morgan Z C P O, et al. A low cost and highly efficient metamaterial reflector antenna[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(3): 1545-1548. doi: 10.1109/TAP.2017.2781151
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  20
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-03
  • 修回日期:  2025-02-19
  • 录用日期:  2025-03-22
  • 网络出版日期:  2025-04-16

目录

    /

    返回文章
    返回