留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光腔衰荡大口径取样光元件性能测试与缺陷分析

周文超 邓婷 彭琛 曹玉龙 魏蔚 刘斯靓 王静

周文超, 邓婷, 彭琛, 等. 基于光腔衰荡大口径取样光元件性能测试与缺陷分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240413
引用本文: 周文超, 邓婷, 彭琛, 等. 基于光腔衰荡大口径取样光元件性能测试与缺陷分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240413
Zhou Wenchao, Ting Deng, Chen Peng, et al. Cavity ring-down method based performance characterization and defect analysis of large-aperture sampling optics[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240413
Citation: Zhou Wenchao, Ting Deng, Chen Peng, et al. Cavity ring-down method based performance characterization and defect analysis of large-aperture sampling optics[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240413

基于光腔衰荡大口径取样光元件性能测试与缺陷分析

doi: 10.11884/HPLPB202537.240413
基金项目: 中国工程物理研究院太赫兹科学技术研究中心项目(T2013-04-08);国家高技术发展计划项目
详细信息
    作者简介:

    周文超:张 芳,fangzhang328@163.com

  • 中图分类号: TN247

Cavity ring-down method based performance characterization and defect analysis of large-aperture sampling optics

  • 摘要: 针对前表面高反、后表面增透的取样光学元件的性能测试需求,基于光腔衰荡大口径光学元件反射率均匀性测试实验装置,分别从反射膜面入射和增透膜面入射,扫描测量得到该取样光学元件的反射率分布及光学损耗、缺陷高分辨扫描成像;并进一步通过对比分析缺陷分布图,实现取样光学元件反射膜、透射膜以及基片缺陷分类;另外通过建立双通道光腔衰荡实验装置,获取增透膜的剩余反射率分布以及透射膜缺陷类型;实现了大口径取样光学元件光谱和缺陷特性的准确测量。
  • 图  1  光腔衰荡反射率分布测试实验装置光机结构图和装置照片

    Figure  1.  Schematic diagram and photograph of cavity ring-down apparatus for reflectivity mapping of large-aperture HR optics

    图  2  高反膜面测试和增透膜面入射测量光路示意图. 其中R1和R2为腔镜

    Figure  2.  Optical path diagram of the reflectivity measurements from the HR surface and the AR surface independently. R1 and R2 are the cavity mirrors

    图  3  增透膜测试扫描运动示意图

    Figure  3.  Motion diagram of the sampling optics

    图  4  双通道光腔衰荡测量光路结构示意图

    Figure  4.  Optical path diagram of two-channel CRD. Residual reflection of the AR coating was collected by PD2

    图  5  反射膜面入射测试的反射率分布图

    Figure  5.  Reflectivity mapping results measured from the HR surface

    图  6  取样光学元件中心30/40 mm区域反射率分布测量结果

    Figure  6.  Reflectivity mapping results of the sampling optics in a region of 30/40 mm diameter

    图  7  增透膜面入射扫描测量的反射率分布缺陷点配对图

    Figure  7.  Reflectance distribution defect point pairing diagram measured by surface incident scanning of anti reflective film

    图  8  采用双通道光腔衰荡从增透膜面测量的反射率和残余反射映射结果

    Figure  8.  Reflectivity and residual reflection mapping results measured from the AR surface with two-channel CRD

    表  1  反射膜面和增透膜面入射测试的反射率统计结果比较

    Table  1.   Comparison of Reflectance Statistics between Reflective Film Surface and Anti reflective Film Surface in Incident Testing

    average reflectivity/% maximum reflectivity/% maximum-probability reflectivity/%
    measured from HR surface 99.9804 99.9886 99.9855
    measured from AR surface 99.9442 99.9695 99.9593
    reflectivity difference 0.0362 0.0191 0.0262
    下载: 导出CSV
  • [1] Cook J. High-energy laser weapons since the early 1960s[J]. Optical Engineering, 2012, 52: 021007. doi: 10.1117/1.OE.52.2.021007
    [2] Stewart A F, Bonsall L, Bettis J R, et al. Laser damage in multispectral optical coatings for the ABL[C]//Proceedings of SPIE 3578, Laser-Induced Damage in Optical Materials. 1999, 162-171.
    [3] Yang Dekun, Wang Du, Huang Qiushi, et al. The development of laser-produced plasma EUV light source[J]. Chip, 2022, 1: 100019. doi: 10.1016/j.chip.2022.100019
    [4] Mizoguchi H, Nakarai H, Usami Y, et al. High-power LPP-EUV source for semiconductor HVM: lithography and other applications[C]//Proceedings of SPIE 12292, International Conference on Extreme Ultraviolet Lithography 2022. 2022: 122920X.
    [5] Wisoff P J. Diode pumped alkaline laser system: a high powered, low SWaP directed energy option for ballistic missile defense high-level summary[R]. LLNL-TR-730237, 2017.
    [6] 许晓军. 高能激光六十年: 回顾与展望[J]. 强激光与粒子束, 2020, 32:011007 doi: 10.11884/HPLPB202032.0480

    Xu Xiaojun. Retrospect and prospect on 60-year development of high energy laser[J]. High Power Laser and Particle Beams, 2020, 32: 011007) doi: 10.11884/HPLPB202032.0480
    [7] Zuo Jiexi, Lin Xuechun. High-power laser systems[J]. Laser & Photonics Review, 2022, 16: 2100741.
    [8] Liu Zejin, Jin Xiaoxi, Su Rongtao, et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China Information Sciences, 2019, 62: 41301. doi: 10.1007/s11432-018-9742-0
    [9] Ciofini M, Lapucci A, Lolli S. Diffractive optical components for high power laser beam sampling[J]. Journal of Optics A: Pure and Applied Optics, 2023, 5(3): 186-191.
    [10] 易亨瑜, 彭勇, 胡晓阳, 等. 大口径元件反射率的镜面扫描精密测量系统[J]. 强激光与粒子束, 2005, 17(11): 1601-1604

    Yi Hengyu, Peng Yong, Hu Xiaoyang, et al. Precise measurement system for reflectivity scanning of large aperture components[J]. High Power Laser and Particle Beams, 2005, 17(11): 17(11): 1601-1604
    [11] 周文超, 魏千翯, 彭琛, 等. 2.7~3.0 μm波段高反镜反射率测量研究[J]. 强激光与粒子束, 2024, 36:011002 doi: 10.11884/HPLPB202436.240014

    Zhou Wenchao, Wei Qianhe, Peng Chen, et al. Reflectivity measurement of highly reflective mirrors at spectral band of 2.7−3.0 μm[J]. High Power Laser and Particle Beams, 2024, 36: 011002) doi: 10.11884/HPLPB202436.240014
    [12] ISO 13142: 2021, Optics and photonics – lasers and laser-related equipment – cavity ring-down method for high-reflectance and high-transmittance measurement[S].
    [13] Xiao Shilei, Li Bincheng, Wang Jing. Precise measurements of super-high reflectance with cavity ring-down technique[J]. Metrologia, 2020, 57: 055002. doi: 10.1088/1681-7575/ab9d2d
    [14] Han Yanling, Li Bincheng, Gao Lifeng, et al. Reflectivity mapping of large-aperture mirrors with cavity ringdown technique[J]. Applied Optics, 2017, 56(4): C35-C40. doi: 10.1364/AO.56.000C35
    [15] Cui Hao, Li Bincheng, Xiao Shilei, at al. Simultaneous mapping of reflectance, transmittance and optical loss of highly reflective and anti-reflective coatings with two-channel cavity ring-down technique[J]. Optics Express, 2017, 25(5): 5807-5820. doi: 10.1364/OE.25.005807
    [16] Gong Yuan, Li Bincheng, Han Yanling. Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity[J]. Applied Physics B, 2008, 93(2): 355-360. doi: 10.1007/s00339-008-4864-9
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-04
  • 修回日期:  2025-04-21
  • 录用日期:  2025-04-01
  • 网络出版日期:  2025-05-07

目录

    /

    返回文章
    返回