留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同温度下空气介质气体开关的自击穿特性

姚伟博 魏浩 杨森 王志国 姜晓峰 楼成

姚伟博, 魏浩, 杨森, 等. 不同温度下空气介质气体开关的自击穿特性[J]. 强激光与粒子束, 2025, 37: 045002. doi: 10.11884/HPLPB202537.240416
引用本文: 姚伟博, 魏浩, 杨森, 等. 不同温度下空气介质气体开关的自击穿特性[J]. 强激光与粒子束, 2025, 37: 045002. doi: 10.11884/HPLPB202537.240416
Yao Weibo, Wei Hao, Yang Sen, et al. Analysis of self-breakdown characteristics of air-insulated gas switch at different environmental temperature[J]. High Power Laser and Particle Beams, 2025, 37: 045002. doi: 10.11884/HPLPB202537.240416
Citation: Yao Weibo, Wei Hao, Yang Sen, et al. Analysis of self-breakdown characteristics of air-insulated gas switch at different environmental temperature[J]. High Power Laser and Particle Beams, 2025, 37: 045002. doi: 10.11884/HPLPB202537.240416

不同温度下空气介质气体开关的自击穿特性

doi: 10.11884/HPLPB202537.240416
基金项目: 国家重点研发计划项目(2020YFA0710500)
详细信息
    作者简介:

    姚伟博,yaoweibo@nint.ac.cn

  • 中图分类号: TM89

Analysis of self-breakdown characteristics of air-insulated gas switch at different environmental temperature

  • 摘要: 开展不同温度下气体开关的自击穿特性研究,对提升脉冲功率装置的环境适应性具有促进作用,尤其是在页岩油气资源开采等领域具有重大应用前景。通过建立空气介质同轴气体开关高温性能研究平台,实验研究了气体开关在不同环境温度下的自击穿电压分布,结合汤森放电理论,分析了环境温度对开关自击穿放电过程的主要影响因素和规律。研究结果表明:在不同环境温度下,影响空气介质气体开关自击穿电压的主要因素是气体介质密度和电极间隙距离。对于腔体可换气气体开关,其自击穿电压随环境温度的升高而下降;对于腔体密闭气体开关,开关电极烧蚀过程中喷溅出的高温颗粒造成绝缘材料表面的分子热解和吸附气体脱吸附,以及大电流放电过程中发生气体分子化学反应等,造成开关内气体产物成份变化,气体分子总数密度降低,引起开关自击穿稳定性降低和开关自击穿电压下降。
  • 图  1  同轴气体开关及高温性能研究实验平台结构示意图

    Figure  1.  Schematic diagram of the coaxial gas switch and high temperature performance research experimental platform

    1-high temperature test chamber;2-capacitor;3-high temperature insulator;4-coxial gas switch;5-high voltage DC power;6-supportor;7-current coil

    图  2  同轴气体开关放电电流和电压波形图

    Figure  2.  Diagram of coaxial gas switch discharge current and voltage waveform

    图  3  不同环境温度下的气体开关自击穿电压分布

    Figure  3.  Distribution of self-breakdown voltage of gas switch at different environmental temperatures

    图  4  不同温度下气体开关自击穿电压平均值和标准偏差

    Figure  4.  Mean and standard deviation of gas switch self-breakdown voltage at different environmental temperatures

    图  5  不同温度下电子平均能量和发射电流密度变化曲线

    Figure  5.  Curves of average electron energy and emission current density at different environmental temperatures

    图  6  碰撞电离系数与电子能量的关系曲线

    Figure  6.  Relationship curve between collision ionization coefficients and electron energy

    图  7  不同温度下气体开关电极和绝缘材料烧蚀前后表面形貌图

    Figure  7.  Surface morphology of gas switch electrodes and insulating materials before and after ablation at different environmental temperatures

    图  8  气体开关放电后气体产物组成成份图

    Figure  8.  Composition diagram of air discharge gas products

    图  9  O3浓度与放电次数的关系图

    Figure  9.  Relationship Schematic between O3 concentration and discharge times

  • [1] 刘克富, 赵海洋, 邱剑. 快脉冲放电等离子体用于难降解污水处理[J]. 高电压技术, 2009, 35(1):12-16

    Liu Kefu, Zhao Haiyang, Qiu Jian. Degradation of organic wastewater by pulsed discharge plasma[J]. High Voltage Engineering, 2009, 35(1): 12-16
    [2] 郭英训, 许剑臣, 袁仙凤, 等. 低温等离子技术在沥青拌和站沥青烟气净化中的应用研究[J]. 试验研究, 2020, 51(2):40-43

    Guo Yingxun, Xu Jianchen, Yuan Xianfeng, et al. Application of low temperature plasma technology to asphalt fume cleaning for asphalt mixing plants[J]. Test and Research, 2020, 51(2): 40-43
    [3] 袁园. 低温等离子体活化水对鲜切生菜杀菌效能及贮藏品质的影响[D]. 南京: 南京农业大学, 2020

    Yuan Yuan. The effect of cold plasma activated water on fresh cut lettuce during storage[D]. Nanjing: Nanjing Agricultural University, 2020
    [4] 韩旻, 韩波, 王新新, 等. 脉冲大电流放电技术在疏通油井上的应用[J]. 电工电能新技术, 1998(1):36-40

    Han Min, Han Bo, Wang Xinxin, et al. Application of impulse discharge with high current technique on oil well plug-releasing[J]. Advanced Technology of Electrical Engineering and Energy, 1998(1): 36-40
    [5] 孙西濛, 马瑞, 吕嘉, 等. 高压脉冲等离子体碎岩的实验研究[J]. 地下空间与工程学报, 2020, 16(6):1657-1664

    Sun Ximeng, Ma Rui, Lü Jia, et al. Experimental study on crushing rock using high voltage pulse power technology[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(6): 1657-1664
    [6] 江伟华. 高重复频率脉冲功率技术及其应用: (6)代表性的应用[J]. 强激光与粒子束, 2014, 26:030201

    Jiang Weihua. Repetition rate pulsed power technology and its applications: (vi) typical applications[J]. High Power Laser and Particle Beams, 2014, 26: 030201
    [7] 高翔, 万元熙, 丁宁, 等. 可控核聚变科学技术前沿问题和进展[J]. 中国工程科学, 2018, 20(3):25-31

    Gao Xiang, Wan Yuanxi, Ding Ning, et al. Frontier issues and progress of controlled nuclear fusion science and technology[J]. Strategic Study of CAE, 2018, 20(3): 25-31
    [8] 邱孟通, 呼义翔, 吴伟, 等. 西北核技术研究所强脉冲辐射模拟装置近年发展综述[J]. 现代应用物理, 2024, 15:030101 doi: 10.12061/j.issn.2905-6223.2024.030101

    Qiu Mengtong, Hu Yixiang, Wu Wei, et al. Review of the development of intense pulsed radiation simulator and its technology in Northwest Institute of Nuclear Technology in the past decade[J]. Modern Applied Physics, 2024, 15: 030101 doi: 10.12061/j.issn.2905-6223.2024.030101
    [9] 聂鑫, 石跃武, 刘逸飞, 等. 电磁脉冲电场测量技术研究综述[J]. 现代应用物理, 2024, 15:010101

    Nie Xin, Shi Yuewu, Liu Yifei, et al. Review of electric field measurement technology for electromagnetic pulse[J]. Modern Applied Physics, 2024, 15: 010101
    [10] 吴凌华, 任亚辉. 高功率微波武器反击无人机研究现状及发展趋势[J]. 移动电源与车辆, 2024, 55(1):60-66 doi: 10.3969/j.issn.1003-4250.2024.01.0014

    Wu Linghua, Ren Yahui. Research status and development trend of high power microwave weapons counterattack unmanned aerial vehicle[J]. Movable Power Station & Vehicle, 2024, 55(1): 60-66 doi: 10.3969/j.issn.1003-4250.2024.01.0014
    [11] 杨剑波, 宗思光, 陈利斐. 高功率激光武器进展与启示[J]. 激光与红外, 2021, 51(6):695-704 doi: 10.3969/j.issn.1001-5078.2021.06.002

    Yang Jianbo, Zong Siguang, Chen Lifei. Developments and trends of laser weapons[J]. Laser & Infrared, 2021, 51(6): 695-704 doi: 10.3969/j.issn.1001-5078.2021.06.002
    [12] Toyota H, Zama S, Akamine Y. Gaseous electrical discharge characteristics in air and nitrogen at cryogenic temperature[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2002, 9(6): 891-898. doi: 10.1109/TDEI.2002.1115482
    [13] Fujita H, Kouno T. The breakdown voltages of N2-O2 gas mixtures in non-uniform field at low temperatures[J]. Journal of Physics D: Applied Physics, 1978, 11: 2233-2241. doi: 10.1088/0022-3727/11/16/010
    [14] Fujita H, Kouno T, Noguchi Y, et al. Breakdown voltages of gaseous N2 and air from normal to cryogenic temperatures[J]. Cryogenics, 1978, 18(4): 195-200. doi: 10.1016/0011-2275(78)90001-2
    [15] Sili E, Koliatene F, Cambronne J P. Pressure and temperature effects on the Paschen curve[C]//2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. 2011: 464-467.
    [16] Sili E, Cambronne J P, Koliatene F. Temperature dependence of electrical breakdown mechanism on the left of the Paschen minimum[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 3173-3179. doi: 10.1109/TPS.2011.2165969
    [17] Liu Xingnan, Shi Zhengang, Yang Guojun, et al. Experimental study on breakdown voltage of high pressure and high temperature helium gas between parallel electrodes[J]. Annals of Nuclear Energy, 2017, 110: 1224-1231. doi: 10.1016/j.anucene.2017.08.031
    [18] Zheng Yu, Zhou Wenjun, Yang Shuai. Temperature effect on the insulation performance of SF6/N2 gas mixture at a constant volume[C]//2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE). 2016: 1-4.
    [19] 满林坤, 梁毅, 张娜, 等. 气体火花间隙开关的自击穿性能研究[J]. 高压电器, 2021, 57(9):146-151

    Man Linkun, Liang Yi, Zhang Na, et al. Research on self-breakdown performance of gas spark gap switch[J]. High Voltage Apparatus, 2021, 57(9): 146-151
    [20] Kuffel E, Zaengl W S. High-voltage engineering[M]. Amsterdam: Elsevier, 1984.
    [21] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005

    Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005
    [22] 施围, 邱毓昌, 张桥根. 高电压工程基础[M]. 2版. 北京: 机械工业出版社, 2014

    Shi Wei, Qiu Yuchang, Zhang Qiaogen. High voltage engineering foundation[M]. 2nd ed. Beijing: China Mechine Press, 2014
    [23] 刘兴华. 基于流体—化学反应混合模型的空气放电机理及特性研究[D]. 重庆: 重庆大学, 2012

    Liu Xinghua. Research of the mechanism and characteristics in air discharge based on the fluid-chemical reaction hybrid model[D]. Chongqing: Chongqing University, 2012
  • 加载中
图(9)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  43
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-07
  • 修回日期:  2025-02-15
  • 录用日期:  2025-02-15
  • 网络出版日期:  2025-04-01
  • 刊出日期:  2025-04-15

目录

    /

    返回文章
    返回