留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电池-超级电容混合储能系统的控制策略

帅怡 李维斌 晏沔

帅怡, 李维斌, 晏沔. 基于电池-超级电容混合储能系统的控制策略[J]. 强激光与粒子束, 2025, 37: 035025. doi: 10.11884/HPLPB202537.240417
引用本文: 帅怡, 李维斌, 晏沔. 基于电池-超级电容混合储能系统的控制策略[J]. 强激光与粒子束, 2025, 37: 035025. doi: 10.11884/HPLPB202537.240417
Shuai Yi, Li Weibin, Yan Mian. Model predictive control of battery-supercapacitor hybrid energy storage system[J]. High Power Laser and Particle Beams, 2025, 37: 035025. doi: 10.11884/HPLPB202537.240417
Citation: Shuai Yi, Li Weibin, Yan Mian. Model predictive control of battery-supercapacitor hybrid energy storage system[J]. High Power Laser and Particle Beams, 2025, 37: 035025. doi: 10.11884/HPLPB202537.240417

基于电池-超级电容混合储能系统的控制策略

doi: 10.11884/HPLPB202537.240417
基金项目: 西物创新行动计划(202301XWCX001-04)
详细信息
    作者简介:

    帅 怡,1161297562@qq.com

    通讯作者:

    李维斌,liwb@swip.ac.cn

  • 中图分类号: TM919

Model predictive control of battery-supercapacitor hybrid energy storage system

  • 摘要: 为匹配中国环流三号装置磁体线圈功率和能量需求,基于模型预测控制理论,设计电池-超级电容混合储能系统放电策略。以环向场线圈为储能系统输出端负载,建立系统预测模型,根据电池、超级电容特性和负载能量需求设计目标函数,实时求解最优开关序列。对电池储能子系统、超级电容储能子系统分别采用长周期慢控、短周期快控,实现电池稳定放电和超级电容瞬态响应。基于MATLAB/Simulink平台进行仿真验证,混合储能系统稳定输出满足负载需求的平顶电流,其电流纹波为0.22%,验证控制策略有效性。
  • 图  1  混合储能系统结构示意图

    Figure  1.  Schematic diagram of the hybrid energy storage system

    图  2  Cuk变换器电路结构

    Figure  2.  Circuit diagram of Cuk converter

    图  3  系统主电路原理图

    Figure  3.  Circuit schematic

    图  4  混合储能系统控制原理图

    Figure  4.  Control schematic diagram of hybrid energy storage system

    图  5  TF线圈波形

    Figure  5.  TF coil waveforms

    图  6  电池储能系统电压电流波形

    Figure  6.  Experimental waveforms of battery energy storage system

    图  7  超级电容储能系统电压电流波形

    Figure  7.  Experimental waveforms of supercapacitor energy storage system

    图  8  储能装置荷电状态波形

    Figure  8.  SOC waveforms of energy storage device

    图  9  PI控制与MPC得到输出电流对比

    Figure  9.  Comparison of output current obtained by PI control and MPC

    表  1  TF线圈参数

    Table  1.   Parameters of TF coil

    LTF/mH RTF/mΩ tflat/s iTF_flat/kA
    32 5.6 7 140
    下载: 导出CSV

    表  2  仿真模型参数

    Table  2.   Parameters of simulation model

    vB/V RB/mΩ RC/mΩ C/F L2, L4/mH vC(0)/V SSOC_B(0)
    100 0.102 0.955 26400 0.6 114 0.8
    C1, C2/F C3/μF L1, L3/mH rC/mΩ rL/mΩ LTF/mH RTF/mΩ
    10 470×20 0.5 1 0.2 32 5.6
    N1, N2 T1/ms T2/ms i1ref/kA i2ref/kA ISCmax/kA iTFref/kA
    2 0.25 0.1 12 10 10 14
    α1 β1_up β1_flat KPi KIi KPv KIv
    0.9 0.9 0.5 2 0 5 10
    下载: 导出CSV
  • [1] Zhong Wulyu, HL-3 Team. China's HL-3 tokamak achieves H-mode operation with 1 MA plasma current[J]. The Innovation, 2024, 5: 100555.
    [2] 宣伟民, 王英翘, 李华俊, 等. HL-2M装置供电系统研制[J]. 核聚变与等离子体物理, 2021, 41(s2):437-442

    Xuan Weimin, Wang Yingqiao, Li Huajun, et al. Development of HL-2M power supply system[J]. Nuclear Fusion and Plasma Physics, 2021, 41(s2): 437-442
    [3] 袁保山, 龙永兴, 邱银, 等. HL-2M环向场线圈电磁场和受力的计算分析[J]. 核聚变与等离子体物理, 2017, 37(3):249-256

    Yuan Baoshan, Long Yongxing, Qiu Yin, et al. Electromagnetic calculation and load analysis of the HL-2M TF coils[J]. Nuclear Fusion and Plasma Physics, 2017, 37(3): 249-256
    [4] 李逢兵. 含锂电池和超级电容混合储能系统的控制与优化研究[D]. 重庆: 重庆大学, 2015

    Li Fengbing. Control and optimization of hybrid energy storage systems containing lithium-ion batteries and super-capacitors[D]. Chongqing: Chongqing University, 2015
    [5] Kollimalla S K, Mishra M K, Narasamma N L. Design and analysis of novel control strategy for battery and supercapacitor storage system[J]. IEEE Transactions on Sustainable Energy, 2014, 5(4): 1137-1144. doi: 10.1109/TSTE.2014.2336896
    [6] 王红艳, 张文倩. 改进型逻辑门限混合储能系统控制策略研究[J]. 智慧电力, 2020, 48(5):41-46 doi: 10.3969/j.issn.1673-7598.2020.05.007

    Wang Hongyan, Zhang Wenqian. Control strategy of improved logic threshold hybrid energy storage system[J]. Smart Power, 2020, 48(5): 41-46 doi: 10.3969/j.issn.1673-7598.2020.05.007
    [7] Essoufi M, Hajji B, Rabhi A. Fuzzy logic based energy management strategy for fuel cell hybrid electric vehicle[C]//Proceedings of 2020 International Conference on Electrical and Information Technologies. 2020: 1-7.
    [8] 吴铁洲, 薛竹山, 向富超, 等. 基于遗传算法的电动汽车HESS功率优化分配[J]. 电气传动, 2019, 49(2):49-55

    Wu Tiezhou, Xue Zhushan, Xiang Fuchao, et al. Optimization of HESS power allocation for electric vehicle based on genetic algorithm[J]. Electric Drive, 2019, 49(2): 49-55
    [9] Javed M S, Ma Tao, Jurasz J, et al. Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island[J]. Renewable Energy, 2021, 164: 1376-1394. doi: 10.1016/j.renene.2020.10.063
    [10] Khoobi Arani S, Niasar A H, Zadeh A H. Energy management of dual-source propelled electric vehicle using fuzzy controller optimized via genetic algorithm[C]//Proceedings of the 7th Power Electronics and Drive Systems Technologies Conference. 2016: 338-343.
    [11] Raveendran Nair U, Costa-Castelló R. A model predictive control-based energy management scheme for hybrid storage system in islanded microgrids[J]. IEEE Access, 2020, 8: 97809-97822. doi: 10.1109/ACCESS.2020.2996434
    [12] Xiong Rui, Cao Jiayi, Yu Quanqing. Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle[J]. Applied Energy, 2018, 211: 538-548. doi: 10.1016/j.apenergy.2017.11.072
    [13] Xiong Rui, Chen Huan, Wang Chun, et al. Towards a smarter hybrid energy storage system based on battery and ultracapacitor - A critical review on topology and energy management[J]. Journal of Cleaner Production, 2018, 202: 1228-1240. doi: 10.1016/j.jclepro.2018.08.134
    [14] Santucci A, Sorniotti A, Lekakou C. Power split strategies for hybrid energy storage systems for vehicular applications[J]. Journal of Power Sources, 2014, 258: 395-407. doi: 10.1016/j.jpowsour.2014.01.118
    [15] Kumar K, Bae S. Coordinated dynamic power management for renewable energy-based grid-connected microgrids using model predictive control[J]. IEEE Transactions on Industrial Informatics, 2023, 19(9): 9596-9608. doi: 10.1109/TII.2022.3231409
    [16] 宋元明, 刘亚杰, 金光, 等. 锂离子电池/超级电容器混合储能系统能量管理方法综述[J]. 储能科学与技术, 2024, 13(2):652-668

    Song Yuanming, Liu Yajie, Jin Guang, et al. Review of energy management methods for lithium-ion battery/supercapacitor hybrid energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(2): 652-668
    [17] Song Ziyou, Hofmann H, Li Jiaqiu, et al. A comparison study of different semi-active hybrid energy storage system topologies for electric vehicles[J]. Journal of Power Sources, 2015, 274: 400-411. doi: 10.1016/j.jpowsour.2014.10.061
    [18] Gorji S A, Sahebi H G, Ektesabi M, et al. Topologies and control schemes of bidirectional DC-DC power converters: an overview[J]. IEEE Access, 2019, 7: 117997-118019. doi: 10.1109/ACCESS.2019.2937239
    [19] Jaga O P, Gupta R, Jena B, et al. Bi-directional DC/DC converters used in interfacing ESSs for RESs and EVs: a review[J]. IETE Technical Review, 2023, 40(3): 334-370. doi: 10.1080/02564602.2022.2116362
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  132
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-09
  • 修回日期:  2025-01-21
  • 录用日期:  2025-01-21
  • 网络出版日期:  2025-02-15
  • 刊出日期:  2025-03-15

目录

    /

    返回文章
    返回