View factors in high-temperature pebble beds based on the ray tracing theory
-
摘要: 在高温颗粒球床堆芯辐射换热过程中,角系数是辐射换热计算的关键参数。传统数值计算角系数的方法需进行复杂积分运算,且不同几何形状的积分公式各异,计算难度较大。为降低球床颗粒间角系数的计算难度,提出了一种基于光线追踪理论并结合颗粒辐射特性的角系数计算模型。该模型无需对颗粒进行建模做离散分析,仅需获取颗粒的坐标信息和半径即可进行计算,极大地简化了计算过程。通过在颗粒相切情况下对比光线追踪与数值结果,当光线密度达到特定值时,二者结果相对误差在1%内。颗粒间辐射主要以中心连线为辐射能量最强处,向四周减少,其变化趋势呈余弦函数。在球床颗粒随机堆积情况下,选取单个颗粒进行分析,发现辐射范围以2倍直径内为主,此时角系数累积超过0.98,颗粒数量在100个以内;在3倍直径范围内,累积角系数超过0.99。Abstract: In this paper, view factors are crucial for radiative heat transfer calculation in high-temperature pebble beds. Traditional numerical calculation of view factors demands complex integration, and different formulas are needed for various geometries, leading to high computational complexity. To address this issue, we proposed a view factors model based on ray tracing and combined with particle radiation characteristics. This model eliminates the need for discrete analysis in particle modeling; it only requires particle coordinates and radii for computation. When comparing the results of ray tracing and the numerical method for tangent particles, we found that when the optical density reaches a certain value, the relative error between the two results is within 1%. particle-particle radiation mainly concentrates along the center line, and its intensity decreases in all directions following a cosine function. When we analyzed a single particle from the randomly accumulated pebble bed particles, we determined that the radiation range was mainly within twice the diameter. This was accompanied by a cumulative angular coefficient exceeding 0.98 and the number of particles is within 100. When examining the radiation range within three times the diameter of the particles, we discovered that when the cumulative angular coefficient surpassed 0.99. This paper presents a simpler method for calculating the view factor of complex pebble beds, providing technical support for analyzing the heat radiation transfer characteristics in high-temperature pebble beds.
-
Key words:
- high-temperature pebble beds /
- radiation heat exchange /
- ray tracing /
- view factor /
- numerical method
-
表 1 光线行进距离和光线偏移角度的变化趋势
Table 1. The trend of changes in the distance traveled by light and the angle of light deviation
particle center
distance (H)ray tracing
($ \times {10}^{-2} $)numerical method
($ \times {10}^{-2} $)average distance of
heat radiationaverage angle of
thermal radiation2 7.573 7.558 0.358 30.05 3 2.964 2.959 1.494 18.25 4 1.605 1.615 2.620 13.35 5 1.017 1.021 3.621 10.51 6 0.698 0.704 4.597 8.73 -
[1] 游战洪. 世界首座模块式球床高温气冷堆[J]. 科学, 2016, 68(1):24-28You Zhanhong. The world first pebble-bed modular high temperature gas cooled reactor[J]. Science, 2016, 68(1): 24-28 [2] Wu Yongyong, Ren Cheng, Yang Xingtuan, et al. Repeatable experimental measurements of effective thermal diffusivity and conductivity of pebble bed under vacuum and helium conditions[J]. International Journal of Heat and Mass Transfer, 2019, 141: 204-216. doi: 10.1016/j.ijheatmasstransfer.2019.06.071 [3] 姜胜耀, 桂南, 杨星团, 等. 球床式高温气冷堆球流及球床辐射的理论与实验研究进展[J]. 原子能科学技术, 2019, 53(10):1918-1929Jiang Shengyao, Gui Nan, Yang Xingtuan, et al. Theoretical and experimental research progress on pebble flow and effective thermal conductivity in pebble-type HTGR[J]. Atomic Energy Science and Technology, 2019, 53(10): 1918-1929 [4] 吴浩, 桂南, 杨星团, 等. 高温球床辐射换热机理研究[J]. 核动力工程, 2016, 37(2):32-37Wu Hao, Gui Nan, Yang Xingtuan, et al. Study on mechanism of radiation heat exchange for high temperature pebble beds[J]. Nuclear Power Engineering, 2016, 37(2): 32-37 [5] 郑艳华, 夏冰, 解衡, 等. HTR-10超高温运行的初步物理热工设计[J]. 中国基础科学, 2021, 23(3):16-20Zheng Yanhua, Xia Bing, Xie Heng, et al. Preliminary physical design and thermal hydraulic design on HTR-10 operating in higher outlet temperature[J]. China Basic Science, 2021, 23(3): 16-20 [6] 包涛, 高若晗, 谭援强. 基于斐波那契数积分计算非等径颗粒视角系数[J]. 计算力学学报, 2022, 39(3):389-396 doi: 10.7511/jslxCMGM202216Bao Tao, Gao Ruohan, Tan Yuanqiang. Fibonacci integration for evaluating view factors coefficient of non-equal-diameter particles[J]. Chinese Journal of Computational Mechanics, 2022, 39(3): 389-396 doi: 10.7511/jslxCMGM202216 [7] 王宪礴, 赵富龙, 谢林, 等. 氦氙气冷小堆燃料棒辐射散热特性分析[J]. 原子能科学技术, 2024, 58(5):1060-1068Wang Xianbo, Zhao Fulong, Xie Lin, et al. Analysis of radiation heat dissipation characteristics of helium-xenon gas cooled small reactor fuel rod[J]. Atomic Energy Science and Technology, 2024, 58(5): 1060-1068 [8] Rousseau P G, du Toit C G, van Antwerpen W, et al. Separate effects tests to determine the effective thermal conductivity in the PBMR HTTU test facility[J]. Nuclear Engineering and Design, 2014, 271: 444-458. doi: 10.1016/j.nucengdes.2013.12.015 [9] De Beer M, Du Toit C G, Rousseau P G. A methodology to investigate the contribution of conduction and radiation heat transfer to the effective thermal conductivity of packed graphite pebble beds, including the wall effect[J]. Nuclear Engineering and Design, 2017, 314: 67-81. doi: 10.1016/j.nucengdes.2017.01.010 [10] Nassar Y F. Analytical-numerical computation of view factor for several arrangements of two rectangular surfaces with non-common edge[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120130. doi: 10.1016/j.ijheatmasstransfer.2020.120130 [11] Howell J R, Daun K J. The past and future of the Monte Carlo method in thermal radiation transfer[J]. Journal of Heat Transfer, 2021, 143: 100801. doi: 10.1115/1.4050719 [12] Mirhosseini M, Saboonchi A. View factor calculation using the Monte Carlo method for a 3D strip element to circular cylinder[J]. International Communications in Heat and Mass Transfer, 2011, 38(6): 821-826. doi: 10.1016/j.icheatmasstransfer.2011.03.022 [13] Gupta M K, Bumtariya K J, Shukla H, et al. Methods for evaluation of radiation view factor: a review[J]. Materials Today: Proceedings, 2017, 4(2): 1236-1243. doi: 10.1016/j.matpr.2017.01.143 [14] 杨星团, 刘志勇, 胡文平, 等. HTR-10堆芯球流运动的唯象学DEM模拟[J]. 原子能科学技术, 2013, 47(12):2231-2237Yang Xingtuan, Liu Zhiyong, Hu Wenping, et al. DEM simulation of pebble flow in HTR-10 core by phenomenological method[J]. Atomic Energy Science and Technology, 2013, 47(12): 2231-2237 [15] Sobol’ I M, Asotsky D, Kreinin A, et al. Construction and comparison of high-dimensional sobol’ generators[J]. Wilmott, 2011, 2011(56): 64-79. doi: 10.1002/wilm.10056 [16] Jarc A, Pers J, Rogelj P, et al. Efficient sampling for the evaluation protocol for 2-D rigid registration[J]. Informacije MIDEM, 2009, 39(1): 1-8. [17] Todorov V, Georgiev S. A Hammersley and Van Der Corput sequences comparison for multidimensional sensitivity analysis[J]. AIP Conference Proceedings, 2023, 2953: 090008. [18] Howell J R, Menguc M P, Daun K, et al. Thermal radiation heat transfer[M]. 7th ed. Boca Raton: CRC Press, 2020. [19] Feng Yuntian, Han K. An accurate evaluation of geometric view factors for modelling radiative heat transfer in randomly packed beds of equally sized spheres[J]. International Journal of Heat and Mass Transfer, 2012, 55(23/24): 6374-6383. [20] Smith N A, Tromble R W. Sampling uniformly from the unit simplex[R]. Baltimore: Johns Hopkins University, 2004: 29. [21] 埃里克·海恩斯, 托马斯·艾科奈-莫勒. 光线追踪精粹—基于DXR及其他API的高质量实时渲染[M]. 张静, 黄琦, 张鹏飞, 译. 北京: 科学出版社, 2021Haines E, Akenine-Möller T. Ray tracing gems: high-quality and real-time rendering with DXR and other APIs[M]. Zhang Jing, Huang Qi, Zhang Pengfei, trans. Beijing: Science Press, 2021 [22] Walker T, Xue Shicheng, Barton G W. A robust Monte Carlo based ray-tracing approach for the calculation of view factors in arbitrary 3D geometries[C]//Proceedings of the CHT-12. ICHMT International Symposium on Advances in Computational Heat Transfer. 2012. [23] 程云阶, 李一波, 丛伟. 光线追踪求交算法的研究及其实现[J]. 沈阳航空工业学院学报, 2000, 17(2):9-13Cheng Yunjie, Li Yibo, Cong Wei. Research on ray tracking cap[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2000, 17(2): 9-13 [24] Frank A, Heidemann W, Spindler K. Modeling of the surface-to-surface radiation exchange using a Monte Carlo method[J]. Journal of Physics: Conference Series, 2016, 745: 032143. doi: 10.1088/1742-6596/745/3/032143 -