留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光线追踪理论的高温球床堆角系数规律研究

赵蓬 吴浩

赵蓬, 吴浩. 基于光线追踪理论的高温球床堆角系数规律研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240438
引用本文: 赵蓬, 吴浩. 基于光线追踪理论的高温球床堆角系数规律研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240438
Zhao Peng, Wu Hao. View factors in high-temperature pebble beds based on the ray tracing theory[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240438
Citation: Zhao Peng, Wu Hao. View factors in high-temperature pebble beds based on the ray tracing theory[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240438

基于光线追踪理论的高温球床堆角系数规律研究

doi: 10.11884/HPLPB202537.240438
基金项目: 国家自然科学基金项目(12105101); 中央高校基本科研业务费专项(2025MS066)
详细信息
    作者简介:

    赵 蓬,17277829132@163.com

    通讯作者:

    吴 浩,wuhao1938@hotmail.com

  • 中图分类号: TL331

View factors in high-temperature pebble beds based on the ray tracing theory

  • 摘要: 在高温颗粒球床堆芯辐射换热过程中,角系数是辐射换热计算的关键参数。传统数值计算角系数的方法需进行复杂积分运算,且不同几何形状的积分公式各异,计算难度较大。为降低球床颗粒间角系数的计算难度,提出了一种基于光线追踪理论并结合颗粒辐射特性的角系数计算模型。该模型无需对颗粒进行建模做离散分析,仅需获取颗粒的坐标信息和半径即可进行计算,极大地简化了计算过程。通过在颗粒相切情况下对比光线追踪与数值结果,当光线密度达到特定值时,二者结果相对误差在1%内。颗粒间辐射主要以中心连线为辐射能量最强处,向四周减少,其变化趋势呈余弦函数。在球床颗粒随机堆积情况下,选取单个颗粒进行分析,发现辐射范围以2倍直径内为主,此时角系数累积超过0.98,颗粒数量在100个以内;在3倍直径范围内,累积角系数超过0.99。
  • 图  1  HTR-10 堆芯模型与热辐射分布

    Figure  1.  HTR-10 core model and thermal radiation distribution

    图  2  光线追踪示意图

    Figure  2.  Schematic diagram of ray tracing

    图  3  由三种采样方法生成的2000个点

    Figure  3.  2000 Points generated by three sampling methods

    图  4  采样结果轴向分布

    Figure  4.  Axial distribution of sampling results

    图  5  光线追踪模型流程

    Figure  5.  Ray tracing model process

    图  6  光线追踪模型与数值解角系数对比

    Figure  6.  Comparison of view factors between ray tracing model and numerical solution

    图  7  辐射平均传递距离和辐射平均传递角度

    Figure  7.  Average radiation transmission distance and average radiation transmission angle

    图  8  颗粒间距离和遮挡颗粒位置对角系数的影响

    Figure  8.  Impact of interparticle distance and obstructive particle position on the view factors

    图  9  HTR-10 球床结构

    Figure  9.  HTR-10 pebble bed structure

    图  10  不同直径范围内的颗粒角系数变化

    Figure  10.  Variation of the particle view factors within different diameter ranges

    图  11  单个颗粒辐射范围

    Figure  11.  Radiation range of individual particles

    表  1  光线行进距离和光线偏移角度的变化趋势

    Table  1.   The trend of changes in the distance traveled by light and the angle of light deviation

    particle center
    distance (H)
    ray tracing
    ($ \times {10}^{-2} $)
    numerical method
    ($ \times {10}^{-2} $)
    average distance of
    heat radiation
    average angle of
    thermal radiation
    2 7.573 7.558 0.358 30.05
    3 2.964 2.959 1.494 18.25
    4 1.605 1.615 2.620 13.35
    5 1.017 1.021 3.621 10.51
    6 0.698 0.704 4.597 8.73
    下载: 导出CSV
  • [1] 游战洪. 世界首座模块式球床高温气冷堆[J]. 科学, 2016, 68(1):24-28

    You Zhanhong. The world first pebble-bed modular high temperature gas cooled reactor[J]. Science, 2016, 68(1): 24-28
    [2] Wu Yongyong, Ren Cheng, Yang Xingtuan, et al. Repeatable experimental measurements of effective thermal diffusivity and conductivity of pebble bed under vacuum and helium conditions[J]. International Journal of Heat and Mass Transfer, 2019, 141: 204-216. doi: 10.1016/j.ijheatmasstransfer.2019.06.071
    [3] 姜胜耀, 桂南, 杨星团, 等. 球床式高温气冷堆球流及球床辐射的理论与实验研究进展[J]. 原子能科学技术, 2019, 53(10):1918-1929

    Jiang Shengyao, Gui Nan, Yang Xingtuan, et al. Theoretical and experimental research progress on pebble flow and effective thermal conductivity in pebble-type HTGR[J]. Atomic Energy Science and Technology, 2019, 53(10): 1918-1929
    [4] 吴浩, 桂南, 杨星团, 等. 高温球床辐射换热机理研究[J]. 核动力工程, 2016, 37(2):32-37

    Wu Hao, Gui Nan, Yang Xingtuan, et al. Study on mechanism of radiation heat exchange for high temperature pebble beds[J]. Nuclear Power Engineering, 2016, 37(2): 32-37
    [5] 郑艳华, 夏冰, 解衡, 等. HTR-10超高温运行的初步物理热工设计[J]. 中国基础科学, 2021, 23(3):16-20

    Zheng Yanhua, Xia Bing, Xie Heng, et al. Preliminary physical design and thermal hydraulic design on HTR-10 operating in higher outlet temperature[J]. China Basic Science, 2021, 23(3): 16-20
    [6] 包涛, 高若晗, 谭援强. 基于斐波那契数积分计算非等径颗粒视角系数[J]. 计算力学学报, 2022, 39(3):389-396 doi: 10.7511/jslxCMGM202216

    Bao Tao, Gao Ruohan, Tan Yuanqiang. Fibonacci integration for evaluating view factors coefficient of non-equal-diameter particles[J]. Chinese Journal of Computational Mechanics, 2022, 39(3): 389-396 doi: 10.7511/jslxCMGM202216
    [7] 王宪礴, 赵富龙, 谢林, 等. 氦氙气冷小堆燃料棒辐射散热特性分析[J]. 原子能科学技术, 2024, 58(5):1060-1068

    Wang Xianbo, Zhao Fulong, Xie Lin, et al. Analysis of radiation heat dissipation characteristics of helium-xenon gas cooled small reactor fuel rod[J]. Atomic Energy Science and Technology, 2024, 58(5): 1060-1068
    [8] Rousseau P G, du Toit C G, van Antwerpen W, et al. Separate effects tests to determine the effective thermal conductivity in the PBMR HTTU test facility[J]. Nuclear Engineering and Design, 2014, 271: 444-458. doi: 10.1016/j.nucengdes.2013.12.015
    [9] De Beer M, Du Toit C G, Rousseau P G. A methodology to investigate the contribution of conduction and radiation heat transfer to the effective thermal conductivity of packed graphite pebble beds, including the wall effect[J]. Nuclear Engineering and Design, 2017, 314: 67-81. doi: 10.1016/j.nucengdes.2017.01.010
    [10] Nassar Y F. Analytical-numerical computation of view factor for several arrangements of two rectangular surfaces with non-common edge[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120130. doi: 10.1016/j.ijheatmasstransfer.2020.120130
    [11] Howell J R, Daun K J. The past and future of the Monte Carlo method in thermal radiation transfer[J]. Journal of Heat Transfer, 2021, 143: 100801. doi: 10.1115/1.4050719
    [12] Mirhosseini M, Saboonchi A. View factor calculation using the Monte Carlo method for a 3D strip element to circular cylinder[J]. International Communications in Heat and Mass Transfer, 2011, 38(6): 821-826. doi: 10.1016/j.icheatmasstransfer.2011.03.022
    [13] Gupta M K, Bumtariya K J, Shukla H, et al. Methods for evaluation of radiation view factor: a review[J]. Materials Today: Proceedings, 2017, 4(2): 1236-1243. doi: 10.1016/j.matpr.2017.01.143
    [14] 杨星团, 刘志勇, 胡文平, 等. HTR-10堆芯球流运动的唯象学DEM模拟[J]. 原子能科学技术, 2013, 47(12):2231-2237

    Yang Xingtuan, Liu Zhiyong, Hu Wenping, et al. DEM simulation of pebble flow in HTR-10 core by phenomenological method[J]. Atomic Energy Science and Technology, 2013, 47(12): 2231-2237
    [15] Sobol’ I M, Asotsky D, Kreinin A, et al. Construction and comparison of high-dimensional sobol’ generators[J]. Wilmott, 2011, 2011(56): 64-79. doi: 10.1002/wilm.10056
    [16] Jarc A, Pers J, Rogelj P, et al. Efficient sampling for the evaluation protocol for 2-D rigid registration[J]. Informacije MIDEM, 2009, 39(1): 1-8.
    [17] Todorov V, Georgiev S. A Hammersley and Van Der Corput sequences comparison for multidimensional sensitivity analysis[J]. AIP Conference Proceedings, 2023, 2953: 090008.
    [18] Howell J R, Menguc M P, Daun K, et al. Thermal radiation heat transfer[M]. 7th ed. Boca Raton: CRC Press, 2020.
    [19] Feng Yuntian, Han K. An accurate evaluation of geometric view factors for modelling radiative heat transfer in randomly packed beds of equally sized spheres[J]. International Journal of Heat and Mass Transfer, 2012, 55(23/24): 6374-6383.
    [20] Smith N A, Tromble R W. Sampling uniformly from the unit simplex[R]. Baltimore: Johns Hopkins University, 2004: 29.
    [21] 埃里克·海恩斯, 托马斯·艾科奈-莫勒. 光线追踪精粹—基于DXR及其他API的高质量实时渲染[M]. 张静, 黄琦, 张鹏飞, 译. 北京: 科学出版社, 2021

    Haines E, Akenine-Möller T. Ray tracing gems: high-quality and real-time rendering with DXR and other APIs[M]. Zhang Jing, Huang Qi, Zhang Pengfei, trans. Beijing: Science Press, 2021
    [22] Walker T, Xue Shicheng, Barton G W. A robust Monte Carlo based ray-tracing approach for the calculation of view factors in arbitrary 3D geometries[C]//Proceedings of the CHT-12. ICHMT International Symposium on Advances in Computational Heat Transfer. 2012.
    [23] 程云阶, 李一波, 丛伟. 光线追踪求交算法的研究及其实现[J]. 沈阳航空工业学院学报, 2000, 17(2):9-13

    Cheng Yunjie, Li Yibo, Cong Wei. Research on ray tracking cap[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2000, 17(2): 9-13
    [24] Frank A, Heidemann W, Spindler K. Modeling of the surface-to-surface radiation exchange using a Monte Carlo method[J]. Journal of Physics: Conference Series, 2016, 745: 032143. doi: 10.1088/1742-6596/745/3/032143
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-24
  • 修回日期:  2025-03-12
  • 录用日期:  2025-05-30
  • 网络出版日期:  2025-07-16

目录

    /

    返回文章
    返回