留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

20.8 W 9.9 mJ 室温紧凑型1030 nm纳秒激光器

王浩 杨晶 李雪鹏 李晶宇 樊仲维 赵天卓 周易楠 王小军 彭钦军

王浩, 杨晶, 李雪鹏, 等. 20.8 W 9.9 mJ 室温紧凑型1030 nm纳秒激光器[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240444
引用本文: 王浩, 杨晶, 李雪鹏, 等. 20.8 W 9.9 mJ 室温紧凑型1030 nm纳秒激光器[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240444
Wang Hao, Yang Jing, Li Xuepeng, et al. 20.8 W, 9.9 mJ room-temperature compact 1030 nm nanosecond laser[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240444
Citation: Wang Hao, Yang Jing, Li Xuepeng, et al. 20.8 W, 9.9 mJ room-temperature compact 1030 nm nanosecond laser[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240444

20.8 W 9.9 mJ 室温紧凑型1030 nm纳秒激光器

doi: 10.11884/HPLPB202537.240444
基金项目: 国家重点研发计划项目(2024YFB4608400)
详细信息
    作者简介:

    王 浩,wanghao190@mails.ucas.ac.cn

    通讯作者:

    杨 晶,yangjing@mail.ipc.ac.cn

  • 中图分类号: TN248.1

20.8 W, 9.9 mJ room-temperature compact 1030 nm nanosecond laser

  • 摘要: 报道了一种室温下运行的高功率、高光束质量Yb:YAG激光振荡器。该激光器采用了中等掺杂(Yb3+ 2.0 at%)的Yb:YAG棒状晶体,并使用准连续输出的光纤耦合模块进行端面泵浦,成功研制出具备48 W高光束质量微秒输出能力的端泵激光器。通过设计优化谐振腔的腔型结构,在100 Hz重复频率下获得了22 W的准连续线偏振微秒激光输出,光光效率达到47.4%,斜效率为53.5%,光束质量M2为1.22。通过优化泵浦光斑尺寸并使用声光调Q模块,实现了20.8 W的纳秒脉冲输出,对应单脉冲能量为9.9 mJ,脉冲宽度为23.9 ns,光束质量M2为1.39。整个激光系统采用紧凑化设计,光学部分尺寸仅为250 mm × 200 mm × 80 mm。
  • 图  1  激光模块装置示意图

    Figure  1.  Schematic diagram of the laser module device

    图  2  不同泵浦功率下,晶体热焦距的实验和仿真的对比

    Figure  2.  Comparison of experimental and simulated thermal focal lengths of the crystal under different pump power levels

    图  3  Yb:YAG声光调Q振荡器实验装置示意图

    Figure  3.  Schematic diagram of the Yb:YAG AO Q-switched oscillator

    图  4  Yb:YAG声光调Q振荡器实验装置3D模型渲染图

    Figure  4.  3D model rendering of the experimental setup for the Yb:YAG acousto-optic Q-switched oscillator

    图  5  谐振腔基模光斑的直径与热焦距的关系

    Figure  5.  Relationship between the fundamental mode spot diameter and the thermal focal length in the resonator

    图  6  不同泵浦重复频率下单脉冲输出能量与泵峰值功率的关系。左上角插图:1030 nm激光器在最高能量输出下30 min的能量稳定性测试

    Figure  6.  Relationship between single-pulse output energy and pump peak power under different pump repetition frequencies. Inset (top-left): 30-minute energy stability test of the 1030-nm laser at maximum output energy

    图  7  不同调Q重复频率和无Q调制时的平均输出功率与泵浦峰值功率的关系

    Figure  7.  Relationship between average output power and pump peak power under different Q-switching repetition frequencies and in non-Q-switched operation

    图  8  调Q重复频率为10 kHz时,单个泵浦脉冲包络下的Yb:YAG振荡器的脉冲波形。插图:单个ns脉冲的扩展轮廓

    Figure  8.  Pulse waveform of the Yb:YAG oscillator under a single pump pulse envelope at a Q-switching repetition frequency of 10 kHz. Inset: Expanded profile of a single ns pulse

    图  9  光束质量M2的测量结果,插图为远场光斑形态

    Figure  9.  Measurement results of the beam quality factor M2, with the inset showing the far-field spot shape

  • [1] Luhs W, Wellegehausen B, Goyal M. CW molecular iodine laser pumped with a low power DPSSL[J]. Applied Physics B, 2017, 123: 125.
    [2] Sekine T, Kurita T, Kurata M, et al. Development of a 100-J DPSSL as a laser processing platform in the TACMI consortium[J]. High Energy Density Physics, 2020, 36: 100800. doi: 10.1016/j.hedp.2020.100800
    [3] Smrž M, Novák O, Mužík J, et al. Advances in high-power, Ultrashort pulse DPSSL technologies at HiLASE[J]. Applied Sciences, 2017, 7: 1016. doi: 10.3390/app7101016
    [4] Brown D C, Tornegård S, Kolis J, et al. The application of cryogenic laser physics to the development of high average power ultra-short pulse lasers[J]. Applied Sciences, 2016, 6: 23. doi: 10.3390/app6010023
    [5] Nubbemeyer T, Kaumanns M, Ueffing M, et al. 1 kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 2017, 42(7): 1381-1384. doi: 10.1364/OL.42.001381
    [6] 高清松, 周唐建, 尚建力, 等. 高效紧凑室温Yb: YAG板条全固态激光技术研究[J]. 强激光与粒子束, 2020, 32:121009

    Gao Qingsong, Zhou Tangjian, Shang Jianli, et al. High efficiency and compact Yb: YAG slab all-solid-state laser at room temperature[J]. High Power Laser and Particle Beams, 2020, 32: 121009
    [7] Xue Yinghong, Uemura S, Torizuka K. Optimal design for a diode-pumped high-power high-efficiency high-beam-quality laser[J]. Optics Communications, 2008, 281(21): 5389-5392. doi: 10.1016/j.optcom.2008.07.057
    [8] Jiang Hao, Chen Xiaoming, Xu Liu, et al. Quasi-continuous-wave, laser-diode-end-pumped Yb: YAG zigzag slab oscillator with high brightness at room temperature[J]. Applied Physics Express, 2017, 10: 022702. doi: 10.7567/APEX.10.022702
    [9] Bruesselbach H, Sumida D S. 69-W-average-power Yb: YAG laser[J]. Optics Letters, 1996, 21(7): 480-482. doi: 10.1364/OL.21.000480
    [10] Tokita S, Kawanaka J, Fujita M, et al. Efficient high-average-power operation of Q-switched cryogenic Yb: YAG laser oscillator[J]. Japanese Journal of Applied Physics, 2005, 44(12L): L1529-L1531. doi: 10.1143/JJAP.44.L1529
    [11] Kuznetsov I, Mukhin I, Palashov O, et al. Thin-rod Yb: YAG amplifiers for high average and peak power lasers[J]. Optics Letters, 2018, 43(16): 3941-3944. doi: 10.1364/OL.43.003941
    [12] Kuznetsov I, Chizhov S, Palashov O. Yb: YAG diverging beam amplifier with 20 mJ pulse energy and 1.5 kHz repetition rate[J]. Optics Letters, 2023, 48(5): 1292-1295. doi: 10.1364/OL.485714
    [13] Fries C, Weitz M, Theobald C, et al. Cavity-dumped Yb: YAG ceramic in the 20 W, 12 mJ range at 6.7 ns operating from 20 Hz to 5 kHz with fluorescence feedback control[J]. Applied Optics, 2016, 55(24): 6538-6546. doi: 10.1364/AO.55.006538
    [14] Zhang Guangyin, Li Ruixuan, Li Kui, et al. 12-mJ 1-kHz cryogenically cooled rod Yb: YAG regenerative amplifier[J]. Frontiers in Physics, 2024, 12: 1383634. doi: 10.3389/fphy.2024.1383634
    [15] Koechner W. Solid-state laser engineering[M]. New York: Springer, 2006.
    [16] Risk W P. Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses[J]. Journal of the Optical Society of America B, 1988, 5(7): 1412-1423. doi: 10.1364/JOSAB.5.001412
    [17] Liu Qiang, Fu Xing, Gong Mali, et al. Effects of the temperature dependence of absorption coefficients in edge-pumped Yb: YAG slab lasers[J]. Journal of the Optical Society of America B, 2007, 24(9): 2081-2089. doi: 10.1364/JOSAB.24.002081
    [18] Innocenzi M E, Yura H T, Fincher C L, et al. Thermal modeling of continuous-wave end-pumped solid-state lasers[J]. Applied Physics Letters, 1990, 56(19): 1831-1833. doi: 10.1063/1.103083
    [19] Lancaster D G, Dawes J M. Thermal-lens measurement of a quasi steady-state repetitively flashlamp-pumped Cr, Tm, Ho: YAG laser[J]. Optics & Laser Technology, 1998, 30(2): 103-108.
  • 加载中
图(9)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-13
  • 修回日期:  2025-04-16
  • 录用日期:  2025-03-13
  • 网络出版日期:  2025-04-30

目录

    /

    返回文章
    返回