[1] |
Luhs W, Wellegehausen B, Goyal M. CW molecular iodine laser pumped with a low power DPSSL[J]. Applied Physics B, 2017, 123: 125.
|
[2] |
Sekine T, Kurita T, Kurata M, et al. Development of a 100-J DPSSL as a laser processing platform in the TACMI consortium[J]. High Energy Density Physics, 2020, 36: 100800. doi: 10.1016/j.hedp.2020.100800
|
[3] |
Smrž M, Novák O, Mužík J, et al. Advances in high-power, Ultrashort pulse DPSSL technologies at HiLASE[J]. Applied Sciences, 2017, 7: 1016. doi: 10.3390/app7101016
|
[4] |
Brown D C, Tornegård S, Kolis J, et al. The application of cryogenic laser physics to the development of high average power ultra-short pulse lasers[J]. Applied Sciences, 2016, 6: 23. doi: 10.3390/app6010023
|
[5] |
Nubbemeyer T, Kaumanns M, Ueffing M, et al. 1 kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 2017, 42(7): 1381-1384. doi: 10.1364/OL.42.001381
|
[6] |
高清松, 周唐建, 尚建力, 等. 高效紧凑室温Yb: YAG板条全固态激光技术研究[J]. 强激光与粒子束, 2020, 32:121009Gao Qingsong, Zhou Tangjian, Shang Jianli, et al. High efficiency and compact Yb: YAG slab all-solid-state laser at room temperature[J]. High Power Laser and Particle Beams, 2020, 32: 121009
|
[7] |
Xue Yinghong, Uemura S, Torizuka K. Optimal design for a diode-pumped high-power high-efficiency high-beam-quality laser[J]. Optics Communications, 2008, 281(21): 5389-5392. doi: 10.1016/j.optcom.2008.07.057
|
[8] |
Jiang Hao, Chen Xiaoming, Xu Liu, et al. Quasi-continuous-wave, laser-diode-end-pumped Yb: YAG zigzag slab oscillator with high brightness at room temperature[J]. Applied Physics Express, 2017, 10: 022702. doi: 10.7567/APEX.10.022702
|
[9] |
Bruesselbach H, Sumida D S. 69-W-average-power Yb: YAG laser[J]. Optics Letters, 1996, 21(7): 480-482. doi: 10.1364/OL.21.000480
|
[10] |
Tokita S, Kawanaka J, Fujita M, et al. Efficient high-average-power operation of Q-switched cryogenic Yb: YAG laser oscillator[J]. Japanese Journal of Applied Physics, 2005, 44(12L): L1529-L1531. doi: 10.1143/JJAP.44.L1529
|
[11] |
Kuznetsov I, Mukhin I, Palashov O, et al. Thin-rod Yb: YAG amplifiers for high average and peak power lasers[J]. Optics Letters, 2018, 43(16): 3941-3944. doi: 10.1364/OL.43.003941
|
[12] |
Kuznetsov I, Chizhov S, Palashov O. Yb: YAG diverging beam amplifier with 20 mJ pulse energy and 1.5 kHz repetition rate[J]. Optics Letters, 2023, 48(5): 1292-1295. doi: 10.1364/OL.485714
|
[13] |
Fries C, Weitz M, Theobald C, et al. Cavity-dumped Yb: YAG ceramic in the 20 W, 12 mJ range at 6.7 ns operating from 20 Hz to 5 kHz with fluorescence feedback control[J]. Applied Optics, 2016, 55(24): 6538-6546. doi: 10.1364/AO.55.006538
|
[14] |
Zhang Guangyin, Li Ruixuan, Li Kui, et al. 12-mJ 1-kHz cryogenically cooled rod Yb: YAG regenerative amplifier[J]. Frontiers in Physics, 2024, 12: 1383634. doi: 10.3389/fphy.2024.1383634
|
[15] |
Koechner W. Solid-state laser engineering[M]. New York: Springer, 2006.
|
[16] |
Risk W P. Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses[J]. Journal of the Optical Society of America B, 1988, 5(7): 1412-1423. doi: 10.1364/JOSAB.5.001412
|
[17] |
Liu Qiang, Fu Xing, Gong Mali, et al. Effects of the temperature dependence of absorption coefficients in edge-pumped Yb: YAG slab lasers[J]. Journal of the Optical Society of America B, 2007, 24(9): 2081-2089. doi: 10.1364/JOSAB.24.002081
|
[18] |
Innocenzi M E, Yura H T, Fincher C L, et al. Thermal modeling of continuous-wave end-pumped solid-state lasers[J]. Applied Physics Letters, 1990, 56(19): 1831-1833. doi: 10.1063/1.103083
|
[19] |
Lancaster D G, Dawes J M. Thermal-lens measurement of a quasi steady-state repetitively flashlamp-pumped Cr, Tm, Ho: YAG laser[J]. Optics & Laser Technology, 1998, 30(2): 103-108.
|