Analysis of spatio-temporal coupling aberrations introduced by achromatic lens assembly tuning errors in ultrafast and ultra intense laser systems
-
摘要: 在超快超强激光系统中,通常会使用消色差透镜组代替普通的扩束透镜,以消除后者自身存在的色差导致的脉冲激光的“空-时”耦合(STCs)畸变。然而,消色差透镜组对装调精度要求非常高,装调误差的存在会引入新的“空-时”耦合畸变,使脉冲激光的远场功率密度下降,达不到预期的消色差效果。针对工程实践中常见的几种消色差透镜组装调误差,详细分析了其引入的“空-时”耦合畸变,并且根据其对远场聚焦功率密度的影响给出了不同种类装调误差的容许范围。分析过程采用了宽光谱脉冲激光传输演化模型及厚透镜等效位相屏演化模型,该模型可以精确地表征激光近远场的“空-时”特性。Abstract: In ultrafast high-power laser systems, achromatic lens groups are typically used to replace standard beam expanders to eliminate spatio-temporal coupling (STC) distortions caused by chromatic aberrations. However, alignment errors in these achromatic lens groups can introduce new STC distortions, reducing far-field power density and compromising the desired correction. This paper quantitatively analyzes the STC distortions induced by three types of alignment errors using a broad-spectrum pulse laser transmission model and a thick lens equivalent phase screen model. The impact of these errors on far-field focusing power density is evaluated, and permissible error ranges for each type are established.
-
Key words:
- ultrafast lasers /
- achromatic lenses /
- spatio-temporal coupling /
- misalignments /
- peak power density
-
表 1 透镜组参数(使用普通透镜组)
Table 1. Parameters of lens set (using common lens set)
lens set lens $ R_1/{\mathrm{mm}} $ $ R_2/{\mathrm{mm}} $ $ {d}_{{\mathrm{c}}}/{\mathrm{mm}} $ $ f/{\mathrm{mm}} $ material SF1 L1 153.238 $ \mathrm{\infty } $ 10 300 K9 L2 $ \mathrm{\infty } $ −153.238 10 300 K9 SF2 L1 179.200 − 1026.250 20 300 K9 L2 887.370 − 5617.620 20 1500 K9 SF3 L1 156.110 376.212 15 500 K9 L2 1066.410 − 6644.320 40 1800 K9 SF4 L1 1365.150 − 8490.090 30 2300 K9 L2 4090.740 − 25782.400 30 6900 K9 表 2 透镜组参数(使用消色差透镜)
Table 2. Parameters of lens set (using achromatic lenses)
lens set lens $ R_1/{\mathrm{mm}} $ $ R_2/{\mathrm{mm}} $ $ {d}_{{\mathrm{c}}}/{\mathrm{mm}} $ $ f/{\mathrm{mm}} $ material SF1 L1 153.238 $ \mathrm{\infty } $ 10 300 K9 L2 $ \mathrm{\infty } $ −153.238 10 300 K9 SF2 L1 179.200 − 1026.250 20 300 K9 L2 887.370 − 5617.620 20 1500 K9 SF3 L1 156.110 376.212 15 500 K9 L2 1066.410 − 6644.320 40 1800 K9 SF4 L1-1 275.800 −349.348 55 2100 K9 L1-2 −349.348 844.100 20 ZF7 L2 4090.740 − 25782.400 30 6900 K9 -
[1] Perry M D, Pennington D, Stuart B C, et al. Petawatt laser pulses[J]. Optics Letters, 1999, 24(3): 160-162. doi: 10.1364/OL.24.000160 [2] 朱兴龙, 王伟民, 余同普, 等. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展[J]. 物理学报, 2021, 70:085202 doi: 10.7498/aps.70.20202224Zhu Xinglong, Wang Weimin, Yu Tongpu, et al. Research progress of ultrabright γ-ray radiation and electron-positron pair production driven by extremely intense laser fields[J]. Acta Physica Sinica, 2021, 70: 085202 doi: 10.7498/aps.70.20202224 [3] Gaul E W, Ditmire T, Martinez M D, et al. Design of the Texas Petawatt laser[C]//2005 Quantum Electronics and Laser Science Conference. 2005: 26-28. [4] Danson C N, Brummitt P A, Clarke R J, et al. Vulcan Petawatt—an ultra-high-intensity interaction facility[J]. Nuclear Fusion, 2004, 44(12): S239-S246. doi: 10.1088/0029-5515/44/12/S15 [5] Liberman A, Lahaye R, Smartsev S, et al. Use of spatiotemporal couplings and an axiparabola to control the velocity of peak intensity[J]. Optics Letters, 2024, 49(4): 814-817. doi: 10.1364/OL.507713 [6] Jolly S W, Gobert O, Quéré F. Spatio-temporal characterization of ultrashort laser beams: a tutorial[J]. Journal of Optics, 2020, 22: 103501. doi: 10.1088/2040-8986/abad08 [7] Bourassin-Bouchet C, Stephens M, de Rossi S, et al. Duration of ultrashort pulses in the presence of spatio-temporal coupling[J]. Optics Express, 2011, 19(18): 17357-17371. doi: 10.1364/OE.19.017357 [8] Pariente G, Gallet V, Borot A, et al. Space–time characterization of ultra-intense femtosecond laser beams[J]. Nature Photonics, 2016, 10(8): 547-553. doi: 10.1038/nphoton.2016.140 [9] Grace E, Ma T, Guang Zhe, et al. Single-shot complete spatiotemporal measurement of terawatt laser pulses[J]. Journal of Optics, 2021, 23: 075505. doi: 10.1088/2040-8986/ac0e1b [10] Tang Haocheng, Men Ting, Liu Xianglei, et al. Single-shot compressed optical field topography[J]. Light: Science & Applications, 2022, 11: 244. [11] Li Wei, Wang Xiao, Hong Yilin, et al. Single-frame measurement of the complete spatiotemporal field of ultrafast laser pulses using carrier frequency-division multiplexing spectral interferometry[J]. Optics & Laser Technology, 2023, 158: 108786. [12] Li Zhaoyang, Tsubakimoto K, Yoshida H, et al. Degradation of femtosecond Petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings[J]. Applied Physics Express, 2017, 10: 102702. doi: 10.7567/APEX.10.102702 [13] Li Zhaoyang, Miyanaga N. Simulating ultra-intense femtosecond lasers in the 3-dimensional space-time domain[J]. Optics Express, 2018, 26(7): 8453-8469. doi: 10.1364/OE.26.008453 [14] Zou Jiping, Coïc H, Papadopoulos D. Spatiotemporal coupling investigations for Ti: sapphire-based multi-PW lasers[J]. High Power Laser Science and Engineering, 2022, 10: e5. doi: 10.1017/hpl.2021.62 [15] 李朝阳, 冷雨欣, 李儒新. 从超强超短激光的脉冲前沿畸变到X形光波包的群速度控制[J]. 激光与光电子学进展, 2024, 61:0500001Li Zhaoyang, Leng Yuxin, Li Ruxin. From pulse-front distortions of ultra-intense ultrashort lasers to group-velocity controls of X-shape optical wave-packets[J]. Laser & Optoelectronics Progress, 2024, 61: 0500001 [16] Planchon T A, Ferré S, Hamoniaux G, et al. Experimental evidence of 25-fs laser pulse distortion in singlet beam expanders[J]. Optics Letters, 2004, 29(19): 2300-2302. doi: 10.1364/OL.29.002300 [17] Bahk S W, Bromage J, Zuegel J D. Offner radial group delay compensator for ultra-broadband laser beam transport[J]. Optics Letters, 2014, 39(4): 1081-1084. doi: 10.1364/OL.39.001081 [18] 康俊, 崔自若, 朱坪, 等. 超短超强激光装置中消色差技术的研究与进展[J]. 激光与光电子学进展, 2020, 57:090001Kang Jun, Cui Ziruo, Zhu Ping, et al. Research progress of achromatic technology in ultra-short and ultra-intense laser facility[J]. Laser & Optoelectronics Progress, 2020, 57: 090001 [19] Jeong T M, Ko D K, Lee J. Deformation of the focal spot of an ultrashort high-power laser pulse due to chromatic aberration by a beam expander[J]. Journal of the Korean Physical Society, 2008, 52(6): 1767-1773. doi: 10.3938/jkps.52.1767 [20] Kempe M, Rudolph W. Femtosecond pulses in the focal region of lenses[J]. Physical Review A, 1993, 48(6): 4721-4729. doi: 10.1103/PhysRevA.48.4721 [21] 朱坪, 谢兴龙, 朱健强, 等. 大口径超短脉冲聚焦系统波前误差对时间信噪比的影响[J]. 光学学报, 2014, 34:1032001 doi: 10.3788/AOS201434.1032001Zhu Ping, Xie Xinglong, Zhu Jianqiang, et al. Influence of wave-front error on temporal signal-to-noise ratio in large aperture ultrashort pulse focusing system[J]. Acta Optica Sinica, 2014, 34: 1032001 doi: 10.3788/AOS201434.1032001 [22] 胡必龙. 高峰值功率飞秒激光的时空耦合效应研究[D]. 北京: 中国工程物理研究院, 2020Hu Bilong. Research on the spatio-temporal coupling of high peak power femtosecond laser[D]. Beijing: China Academy of Engineering Physics, 2020 [23] Kempe M, Rudolph W. Impact of chromatic and spherical aberration on the focusing of ultrashort light pulses by lenses[J]. Optics Letters, 1993, 18(2): 137-139. doi: 10.1364/OL.18.000137 [24] 龙天洋, 李伟, 许浩天, 等. 时空耦合畸变对超快超强激光参数测试及性能评估的影响[J]. 物理学报, 2022, 71:174204 doi: 10.7498/aps.71.20220563Long Tianyang, Li Wei, Xu Haotian, et al. Influence of spatiotemporal coupling distortion on evaluation of pulse-duration-charactrization and focused intensity of ultra-fast and ultra-intensity laser[J]. Acta Physica Sinica, 2022, 71: 174204 doi: 10.7498/aps.71.20220563 [25] 周凯南, 朱启华, 王晓东, 等. 超短脉冲激光系统中空间滤波器透镜的优化设计[J]. 中国激光, 2008, 35(10):1481-1484 doi: 10.3321/j.issn:0258-7025.2008.10.009Zhou Kainan, Zhu Qihua, Wang Xiaodong, et al. Special design of the lens of spatial filter in an ultra-short laser system[J]. Chinese Journal of Lasers, 2008, 35(10): 1481-1484 doi: 10.3321/j.issn:0258-7025.2008.10.009 [26] 夏兰. 高功率超短脉冲激光系统中光束传输技术研究[D]. 北京: 中国工程物理研究院, 2002Xia Lan. Research of laser-transmission technique of high-energy ultrashort pulse-laser systems[D]. Beijing: China Academy of Engineering Physics, 2002 [27] Hunt J T, Renard P A, Simmons W W. Improved performance of fusion lasers using the imaging properties of multiple spatial filters[J]. Applied Optics, 1977, 16(4): 779-782. doi: 10.1364/AO.16.000779 [28] 朱坪, 谢兴龙, 朱健强. 5PW超短脉冲空间滤波器色差对时间信噪比的影响[J]. 光学学报, 2017, 37:0914005 doi: 10.3788/AOS201737.0914005Zhu Ping, Xie Xinglong, Zhu Jianqiang. Influence of chromatic aberration from spatial filters for 5 PW ultra-short pulses on temporal contrast[J]. Acta Optica Sinica, 2017, 37: 0914005 doi: 10.3788/AOS201737.0914005 [29] Zhou Kainan, Huang Xiaojun, Zeng Xiaoming, et al. Improvement of focusing performance for a multi-Petawatt OPCPA laser facility[J]. Laser Physics, 2018, 28: 125301. doi: 10.1088/1555-6611/aae0db [30] 李伟. 超短超强激光系统中的时空耦合效应研究[D]. 合肥: 中国科学技术大学, 2023Li Wei. Spatiotemporal coupling effect in ultrashort and ultra-intense laser systems[D]. Hefei: University of Science and Technology of China, 2023 -