留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光无线能量传输技术研究进展

郭林辉 钟李鑫 蓝建宇 李涛 蒋全伟 谢鹏飞 谭昊 孙堂友 高松信 唐淳

郭林辉, 钟李鑫, 蓝建宇, 等. 激光无线能量传输技术研究进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250004
引用本文: 郭林辉, 钟李鑫, 蓝建宇, 等. 激光无线能量传输技术研究进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250004
Guo Linhui, Zhong Lixin, Lan Jianyu, et al. Research progress of laser wireless power transmission technology[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250004
Citation: Guo Linhui, Zhong Lixin, Lan Jianyu, et al. Research progress of laser wireless power transmission technology[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250004

激光无线能量传输技术研究进展

doi: 10.11884/HPLPB202537.250004
基金项目: 基础加强项目(2020-JCJQ-ZD-245-20-2);中物院基金项目(2023-JMRH-LG)
详细信息
    作者简介:

    郭林辉,glh863@163.com

    通讯作者:

    谭 昊,tanhaomf@163.com

    孙堂友,suntangyou@guet.edu.cn

  • 中图分类号: TN365

Research progress of laser wireless power transmission technology

  • 摘要: 激光无线能量传输技术具有高功率、远距离、非接触式、能信同传等优点,有望成为一种革新性的能源传递方式,在消费电子产品、无人机、航天等领域展现巨大的应用潜力。分析了激光无线能量传输系统的核心模块以及在地面、航天、水下等领域的国内外发展现状,总结了其面临的技术挑战。最后,讨论了激光无线能量传输系统的未来发展趋势。
  • 图  1  激光无线能量传输系统

    Figure  1.  Laser wireless power transmission system

    图  2  光谱响应曲线及大气透射光谱[8]

    Figure  2.  Atmospheric transmission spectra and Spectral response curves [8]

    图  3  光纤激光器光源[12]和半导体激光器光源[15]

    Figure  3.  Fiber laser light source[12] and laser diode light source[15]

    图  4  准直发射镜头[25]及APT系统工作图[14]

    Figure  4.  Collimated emission lens[25] and APT system working diagram[14]

    图  5  多激光多孔径合成发射技术及激光相控阵发射技术[27-28]

    Figure  5.  Multi-laser multi-aperture synthesis emission technology and laser phased array emission technology[27-28]

    图  6  808 nm十结激光电池的三维结构[32]

    Figure  6.  Three-dimensional structure of an 808 nm ten-junction laser cell[32]

    图  7  地面LWPT研究状况

    Figure  7.  Research status of ground-based LWPT

    图  8  SLIPT系统一些潜在应用[52]

    Figure  8.  SLIPT potential application series[52]

    图  9  水下激光无线能量传输系统研究近况

    Figure  9.  Recent advances in underwater LWPT systems

    图  10  太空激光能量无线传输系统概念图

    Figure  10.  Conceptual diagram of wireless transmission of laser energy in space

    表  1  各类激光光源技术特点[9]

    Table  1.   Technical characteristics of various types of laser sources [9]

    laser type wavelength power effciency beam quality
    laser diode ultraviolet-infrared band high high poor
    thin disk laser infrared band high low excellent
    fiber laser infrared band high high excellent
    下载: 导出CSV

    表  2  近红外激光器研究进展

    Table  2.   Research progress of near-infrared lasers

    year wavelength (laser type)/nm power/W efficiency/% references
    2003 940(diode) 1500 50.0 [11]
    2013 1070(fiber) 2000 30.0 [12]
    2014 793(diode) 24 42.3 [13]
    2019 808(diode) 400 49.0 [14]
    2021 808(diode) 1162 [15]
    2021 910(diode) 150 [16]
    2023 1000(diode) 400 51.3 [17]
    2021 445(diode) 1500 [18]
    2022 450(diode) 1800 [19]
    2024 450(diode) 2000 [20]
    下载: 导出CSV

    表  3  不同材料光伏电池发展

    Table  3.   Development of photovoltaic cells with different materials

    material wavelength/nm efficiency/% power/W year references
    GaInP 638 46.70 1.50 2022 [37]
    637 53.50 10.00 2024 [34]
    FAPbBr3 532 43.02 0.07 2023 [38]
    PBDB-TF:BTP-eC9 660 36.20 0.01 2023 [35]
    ITO-4Cl 660 31.60 2024 [36]
    GaAs 810 52.70 22.00 2006 [39]
    808 74.70 7.00 2022 [40]
    808 51.52 15.45 2023 [41]
    808 55.80 2024 [33]
    GaAs/InGaAs 1064 44.10 1.00 2023 [42]
    下载: 导出CSV
  • [1] Kim D, Abu-Siada A, Sutinjo A. State-of-the-art literature review of WPT: current limitations and solutions on IPT[J]. Electric Power Systems Research, 2018, 154: 493-502.
    [2] 唐亮, 仲元昌, 张成祥, 等. 激光无线传能关键技术研究现状及发展趋势[J]. 激光杂志, 2017, 38(10):28-32

    Tang Liang, Zhong Yuanchang, Zhang Chengxiang, et al. Research situation and development trend of laser wireless power transmission key technology[J]. Laser Journal, 2017, 38(10): 28-32
    [3] 李巍, 吴凌远, 王伟平, 等. 半导体激光无线传能中光伏电池转换效率[J]. 强激光与粒子束, 2018, 30:119001 doi: 10.11884/HPLPB201830.180097

    Li Wei, Wu Lingyuan, Wang Weiping, et al. Power conversion efficiency of photovoltaic cells in semiconductor laser wireless power transmission[J]. High Power Laser and Particle Beams, 2018, 30: 119001 doi: 10.11884/HPLPB201830.180097
    [4] Fakidis J, Videv S, Kucera S, et al. Indoor optical wireless power transfer to small cells at nighttime[J]. Journal of Lightwave Technology, 2016, 34(13): 3236-3258.
    [5] DARPA. POWER: persistent optical wireless energy relay[EB/OL]. [2024-12-31]. https://www.darpa.mil/research/programs/power.
    [6] INESC TEC developed high-power optic fibre laser to power nano satellites[EB/OL]. [2024-12-31]. https://www.inesctec.pt/en/news/inesc-tec-developed-high-power-optic-fibre-laser-to-power-nano-satellites.
    [7] Xu Wanli, Wang Xudong, Li Weishi, et al. Research on test and evaluation method of laser wireless power transmission system[J]. EURASIP Journal on Advances in Signal Processing, 2022, 2022: 20.
    [8] Krupke W F, Beach R J, Payne S A, et al. DPAL: a new class of lasers for cw power beaming at ideal photovoltaic cell wavelengths[J]. AIP Conference Proceedings, 2004, 702(1): 367-377.
    [9] Mason R. Feasibility of laser power transmission to a high-altitude unmanned aerial vehicle[R]. RAND Corporation, 2011.
    [10] Polman A, Knight M, Garnett E C, et al. Photovoltaic materials: present efficiencies and future challenges[J]. Science, 2016, 352: aad4424. doi: 10.1126/science.aad4424
    [11] Blackwell T. Recent demonstrations of laser power beaming at DFRC and MSFC[J]. AIP Conference Proceedings, 2005, 766(1): 73-85.
    [12] Sprangle P, Hafizi B, Ting A, et al. High-power lasers for directed-energy applications[J]. Applied Optics, 2015, 54(31): F201-F209.
    [13] He Tao, Yang Suhui, Zhang Haiyang, et al. High-power high-efficiency laser power transmission at 100 m using optimized multi-cell GaAs converter[J]. Chinese Physics Letters, 2014, 31: 104203.
    [14] 时振磊, 孟文文, 申景诗, 等. 无人机激光无线能量传输APT系统跟踪设计[J]. 激光技术, 2019, 43(6):809-814 doi: 10.7510/jgjs.issn.1001-3806.2019.06.015

    Shi Zhenlei, Meng Wenwen, Shen Jingshi, et al. Tracking design of APT system of laser wireless energy transmission for unmanned aerial vehicle[J]. Laser Technology, 2019, 43(6): 809-814 doi: 10.7510/jgjs.issn.1001-3806.2019.06.015
    [15] 李娟, 俞浩, 虞天成, 等. 用于无线能量传输的高效率半导体激光器设计[J]. 红外与激光工程, 2021, 50:20210147 doi: 10.3788/IRLA20210147

    Li Juan, Yu Hao, Yu Tiancheng, et al. Design of high efficiency diode laser module for wireless power transmission[J]. Infrared and Laser Engineering, 2021, 50: 20210147 doi: 10.3788/IRLA20210147
    [16] Ge Chenhao, Sun Lili, Zhong Yuanchang. Design and experimental research of laser wireless power transmission system[C]//Proceedings of the 4th International Symposium on Power Electronics and Control Engineering. 2021: 120800S.
    [17] Semiconductor laser and power converter for optical wireless power transmission[EB/OL]. [2024-12-31]. https://www.everbrightphotonics.com/news/46.html.
    [18] Feve J P, Finuf M, Fritz R, et al. Scalable blue laser system architecture[C]//Proceedings of High-Power Diode Laser Technology XVIII. 2020: 112620P.
    [19] Chann B, Villarreal F J, Zhou Wanglong, et al. Advances in blue high-power/high-brightness direct diode lasers using wavelength beam combining[C]//Proceedings of High-Power Diode Laser Technology XX. 2022: PC1198307.
    [20] Wu Yueting, Zhang Fengchao, Zhang Xinning, et al. Manufacturing and reliability analysis of high-brightness blue light semiconductor laser[C]//Proceedings of High-Power Diode Laser Technology XXII. 2024: 128670D.
    [21] Haid M, Armbruster C, Derix D, et al. 5 W optical power link with generic voltage output and modulated data signal[C]//Proceedings of the 1st Optical Wireless and Fiber Power Transmission Conference. 2019.
    [22] Yigit H, Boynuegri A R. Pulsed laser diode based wireless power transmission application: determination of voltage amplitude, frequency, and duty cycle[J]. IEEE Access, 2023, 11: 54544-54555.
    [23] 乔良, 杨雁南. 激光无线能量传输效率的实验研究[J]. 激光技术, 2014, 38(5):590-594 doi: 10.7510/jgjs.issn.1001-3806.2014.05.003

    Qiao Liang, Yang Yannan. Experimental research of laser wireless power transmission efficiency[J]. Laser Technology, 2014, 38(5): 590-594 doi: 10.7510/jgjs.issn.1001-3806.2014.05.003
    [24] 程坤, 董昊, 蔡卓燃, 等. 高效率远距离激光无线能量传输方案设计[J]. 航天器工程, 2015, 24(1):8-12 doi: 10.3969/j.issn.1673-8748.2015.01.002

    Cheng Kun, Dong Hao, Cai Zhuoran, et al. Scheme design of high efficiency long distance laser power transmission[J]. Spacecraft Engineering, 2015, 24(1): 8-12 doi: 10.3969/j.issn.1673-8748.2015.01.002
    [25] 孟祥翔, 尚涵, 辛明瑞, 等. 激光无线能量传输发射光学系统研制[J]. 红外与激光工程, 2023, 52:20230115 doi: 10.3788/IRLA20230115

    Meng Xiangxiang, Shang Han, Xin Mingrui, et al. Development of emission optical system for laser wireless power transmission[J]. Infrared and Laser Engineering, 2023, 52: 20230115 doi: 10.3788/IRLA20230115
    [26] 袁建华, 黄开, 洪沪生, 等. 激光供能无人机的一种优化跟踪算法[J]. 应用光学, 2020, 41(1):194-201 doi: 10.5768/JAO202041.0107002

    Yuan Jianhua, Huang Kai, Hong Husheng, et al. Optimal tracking algorithm for laser powered unmanned aerial vehicles[J]. Journal of Applied Optics, 2020, 41(1): 194-201 doi: 10.5768/JAO202041.0107002
    [27] 李向阳, 吴世臣, 李钟晓. 激光无线能量传输技术应用及其发展趋势[J]. 航天器工程, 2015, 24(1):1-7 doi: 10.3969/j.issn.1673-8748.2015.01.001

    Li Xiangyang, Wu Shichen, Li Zhongxiao. Laser wireless power transmission technology and its development trend[J]. Spacecraft Engineering, 2015, 24(1): 1-7 doi: 10.3969/j.issn.1673-8748.2015.01.001
    [28] 田博宇, 彭英楠, 胡奇琪, 等. 光学相控阵技术研究进展与发展趋势[J]. 强激光与粒子束, 2023, 35:041001 doi: 10.11884/HPLPB202335.220305

    Tian Boyu, Peng Yingnan, Hu Qiqi, et al. Review of optical phased array technology and its applications[J]. High Power Laser and Particle Beams, 2023, 35: 041001 doi: 10.11884/HPLPB202335.220305
    [29] 严豪健, 符养, 洪振杰, 等. 现代大气折射引论[M]. 上海: 上海科技教育出版社, 2006

    Yan Haojian, Fu Yang, Hong Zhenjie, et al. Introduction to modern atmospheric refraction[M]. Shanghai: Shanghai Science and Technology Education Press, 2006
    [30] 罗传伟, 焦明印. 光学系统折射率温度效应的模拟计算[J]. 应用光学, 2008, 29(2):234-239 doi: 10.3969/j.issn.1002-2082.2008.02.016

    Luo Chuanwei, Jiao Mingyin. Simulated calculation for effect of temperature on refractive index in optical system[J]. Journal of Applied Optics, 2008, 29(2): 234-239 doi: 10.3969/j.issn.1002-2082.2008.02.016
    [31] 宋正方. 应用大气光学基础[M]. 北京: 气象出版社, 1990

    Song Zhengfang. Fundamentals of applied atmospheric optics[M]. Beijing: China Meteorological Press, 1990
    [32] Fafard S, Proulx F, York M C A, et al. High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%[J]. Applied Physics Letters, 2016, 109: 131107. doi: 10.1063/1.4964120
    [33] Chen Y J, Mou Z Q, Wang J, et al. 808 nm laser power converters for simultaneous wireless information and power transfer[J]. IEEE Journal of Photovoltaics, 2024, 14(6): 890-900.
    [34] Sanmartín P, Fernández E F, García-Loureiro A, et al. Design and characterization of a 53.5% efficient gallium indium phosphide-based optical photovoltaic converter under 637 nm laser irradiation at 10 W·cm−2[J]. Solar RRL, 2024, 8: 2400278. doi: 10.1002/solr.202400278
    [35] Wang Yafei, Zheng Zhong, Wang Jianqiu, et al. Organic laser power converter for efficient wireless micro power transfer[J]. Nature Communications, 2023, 14: 5511.
    [36] Wang Yafei, Cui Yong, Wang Jianqiu, et al. Highly efficient and stable organic photovoltaic cells for underwater applications[J]. Advanced Materials, 2024, 36(27): 2402575. doi: 10.1002/adma.202402575
    [37] Kurooka K, Honda T, Komazawa Y, et al. A 46.7% efficient GaInP photonic power converter under high-power 638 nm laser uniform irradiation of 1.5 W cm−2[J]. Applied Physics Express, 2022, 15: 062003.
    [38] Guo Xin, Chen Xiaoming, Li Qingyuan, et al. High efficiency wide-bandgap perovskite solar cells for laser energy transfer underwater[J]. Energy Technology, 2023, 11: 2300083.
    [39] Krut D, Sudharsanan R, Isshiki T, et al. A 53% high efficiency GaAs vertically integrated multi-junction laser power converter[C]//Proceedings of 2007 65th Annual Device Research Conference. 2007: 123-124.
    [40] Fafard S, Masson D P. 74. 7% Efficient GaAs-based laser power converters at 808 nm at 150 K[J]. Photonics, 2022, 9: 579.
    [41] Gou Yudan, Wang Hao, Wang Jun, et al. High-performance laser power converts for direct-energy applications[J]. Optics Express, 2022, 30(17): 31509-31517.
    [42] Kalyuzhnyy N A, Emelyanov V M, Mintairov S A, et al. InGaAs metamorphic laser (λ=1064 nm) power converters with over 44% efficiency[J]. AIP Conference Proceedings, 2018, 2012: 110002.
    [43] Lee S, Lim N, Choi W, et al. Study on battery charging converter for MPPT control of laser wireless power transmission system[J]. Electronics, 2020, 9: 1745.
    [44] Zhou Weiyang, Jin Ke, Zhang Ran. A fast-speed GMPPT method for PV array under Gaussian laser beam condition in wireless power transfer application[J]. IEEE Transactions on Power Electronics, 2022, 37(8): 10016-10028.
    [45] Steinsiek F, Weber K H, Foth W P, et al. Wireless Power Transmission Experiment using an airship as relay system and a moveable rover as ground target for later planetary exploration missions[C]//Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation. 2004: 1-10.
    [46] Kawashima N, Takeda K, Matsuoka H, et al. Laser energy transmission for a wireless energy supply to robots[C]//Proceedings of the 22nd International Symposium on Automation and Robotics in Construction. 2005.
    [47] 李振宇, 石德乐, 申景诗, 等. 基于激光的无线能量传输技术[J]. 空间电子技术, 2013, 10(3):71-76 doi: 10.3969/j.issn.1674-7135.2013.03.016

    Li Zhenyu, Shi Dele, Shen Jingshi, et al. Laser wireless power transmission technology[J]. Space Electronic Technology, 2013, 10(3): 71-76 doi: 10.3969/j.issn.1674-7135.2013.03.016
    [48] Shi Dele, Zhang Longlong, Ma Haihong, et al. Research on Wireless Power transmission system between satellites[C]//Proceedings of 2016 IEEE Wireless Power Transfer Conference. 2016: 1-4.
    [49] Zheng Y F, Zhang G D, Huan Z H, et al. Wireless laser power transmission: recent progress and future challenges[J]. Space Solar Power and Wireless Transmission, 2024, 1(1): 17-26. doi: 10.1016/j.sspwt.2023.12.001
    [50] Uppal R. DARPA airborne energy well seeks laser propulsion on aircrafts to power rechargable unmanned aerial systems[R]. International Defense Security Technology, 2022.
    [51] Nguyen D H. Dynamic optical wireless power transfer for electric vehicles[J]. IEEE Access, 2023, 11: 2787-2795. doi: 10.1109/ACCESS.2023.3234577
    [52] Papanikolaou V K, Tegos S A, Palitharathna K W S, et al. Simultaneous Lightwave information and power transfer in 6G networks[J]. IEEE Communications Magazine, 2024, 62(3): 16-22. doi: 10.1109/MCOM.002.2300290
    [53] Kim S M, Choi J, Jung H. Experimental demonstration of underwater optical wireless power transfer using a laser diode[J]. Chinese Optics Letters, 2018, 16: 080101. doi: 10.3788/COL201816.080101
    [54] Kim S M, Kwon D. Transfer efficiency of underwater optical wireless power transmission depending on the operating wavelength[J]. Current Optics and Photonics, 2020, 4(6): 571-575.
    [55] Tai Y, Miyamoto T. Experimental characterization of high tolerance to beam irradiation conditions of light beam power receiving module for optical wireless power transmission equipped with a fly-eye lens system[J]. Energies, 2022, 15: 7388.
    [56] Zhu Xuegui, Yu Wenchao, Liu Gengjian, et al. The influence of steady-state thermal blooming effect on the quality of underwater laser power transmission[J]. AIP Advances, 2024, 14: 035214.
    [57] Takahashi R, Hayashi S, Watanabe K, et al. Optical wireless power transmission under deep seawater using GaInP solar cells[J]. Energies, 2024, 17: 1572.
    [58] Mankins J, Kaya N, Vasile M. SPS-ALPHA: the first practical solar power satellite via arbitrarily large phased array (a 2011-2012 NIAC project)[C]//Proceedings of the 10th International Energy Conversion Engineering Conference. 2012.
    [59] 俄罗斯将在国际空间站进行利用激光进行无线输电实验[EB/OL]. [2024-12-31]. http://wptchina.com.cn/ReadNews.asp?rid=2089

    Russia will conduct experiments on wireless transmission using laser at the international space station[EB/OL]. [2024-12-31]. http://wptchina.com.cn/ReadNews.asp?rid=2089.
    [60] First in-space laser power beaming experiment surpasses 100 days of successful on-orbit operations[EB/OL]. https://www.globenewswire.com/news-release/2023/07/13/2704532/0/en/First-In-Space-Laser-Power-Beaming-Experiment-Surpasses-100-Days-of-Successful-On-Orbit-Operations.html.
    [61] Abdullah S, Mulles P J S, Amaya R E. A new adaptive wireless power transfer solution for use with space rovers and vehicles[C]//Proceedings of 2022 IEEE International Conference on Wireless for Space and Extreme Environments. 2022: 49-54.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  59
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-06
  • 修回日期:  2025-02-24
  • 录用日期:  2025-02-24
  • 网络出版日期:  2025-03-24

目录

    /

    返回文章
    返回