留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of a W-band microstrip dual-channel TWT

Wang Zhanliang Zhou Shuaicen Lu Zhigang Gong Huarong Gong Yubin Su Xiaogang Feng Jinjun

王战亮, 周帅岑, 路志刚, 等. W波段双通道微带行波管仿真设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250010
引用本文: 王战亮, 周帅岑, 路志刚, 等. W波段双通道微带行波管仿真设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250010
Wang Zhanliang, Zhou Shuaicen, Lu Zhigang, et al. Design of a W-band microstrip dual-channel TWT[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250010
Citation: Wang Zhanliang, Zhou Shuaicen, Lu Zhigang, et al. Design of a W-band microstrip dual-channel TWT[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250010

W波段双通道微带行波管仿真设计

doi: 10.11884/HPLPB202537.250010
详细信息
  • 中图分类号: TN124

Design of a W-band microstrip dual-channel TWT

Funds: National Natural Science Foundation of China (62471097, 62471115, 62471101); Natural Science Foundation of Sichuan Province (2025ZNSFSC0537); Stable Support Porject of 12th Research Institute of China Electronics Technology Group Corporation
More Information
  • 摘要: 微带行波管(TWTs)因其在通信、国防及各类工业领域的广阔应用前景而备受关注。报道了一种基于U形悬置微带线慢波结构(SWS)的W波段小型化双通道行波管,详细论述了慢波结构的高频特性,并通过结构调整优化了其传输特性。采用18.8 kV、0.1 A的电子注进行粒子模拟(PIC)计算表明,该双通道行波管可实现18 W的输出功率,对应增益14 dB。最后,采用三种基底材料(Rogers 5880、石英和金刚石)开展加工和S参数测试,测试表明,石英基底,光刻加工方法的结果与仿真吻合度最高。
  • Figure  1.  The dual-channel meander line SWS

    Figure  2.  The dispersion curves with different b

    Figure  3.  The dispersion curves with different substrate materials

    Figure  4.  the coupling impedance versus frequency

    Figure  5.  Schematic of the dual-channel TWT

    Figure  6.  The changes made to achieve impedance matching

    Figure  7.  The S-parameters of the high-frequency system

    Figure  8.  The output signal and the FFT result

    Figure  9.  The output power and corresponding gain versus frequency

    Figure  10.  The output power versus the input power

    Figure  11.  The output signal of two channels at different frequency

    Figure  13.  The experiment system

    Figure  14.  The interface adapter to VNA

    Figure  15.  The SWS with Rogers 5880

    Figure  16.  The measured S parameters with Rogers 5880

    Figure  17.  Test results of the reflection and transmission coefficient

    Table  1.   The PIC parameters

    voltage of the electron
    beam, U/kV
    current of the electron
    beam, I/A
    radius of circle
    beam, Rbeam/mm
    magnetic field,
    Bz/T
    input power,
    Pin/mW
    18.8 0.1 0.17 0.5 720
    下载: 导出CSV
  • [1] Booske J. Vacuum electronic sources for high power terahertz-regime radiation[C]//2011 IEEE International Vacuum Electronics Conference (IVEC). 2011: 11.
    [2] Wang Zhanliang, Wang Huanyu, He Ziyuan, et al. S band radial beam coaxial grating backward wave oscillator[J]. High Power Laser and Particle Beams, 2023, 35: 113001.
    [3] Komm D S, Benton R T, Limburg H C, et al. Advances in space TWT efficiencies[J]. IEEE Transactions on Electron Devices, 2001, 48(1): 174-176. doi: 10.1109/16.892186
    [4] Wang Zhanliang, Xu Xiong, Gong Yubin, et al. Simulation on W-band sheet beam rectangular waveguide grating backward-wave oscillator[J]. High Power Laser and Particle Beams, 2015, 27: 083005.
    [5] Wang Shaomeng, Cao Zan, Hou Yan, et al. A novel angular log-periodic micro-strip meander-line slow wave structure for low-voltage and wideband traveling wave tube[C]//2013 IEEE 14th International Vacuum Electronics Conference (IVEC). 2013: 1-2.
    [6] Ulisse G, Krozer V. W-band traveling wave tube amplifier based on planar slow wave structure[J]. IEEE Electron Device Letters, 2017, 38(1): 126-129. doi: 10.1109/LED.2016.2627602
    [7] Himes L, Gamzina D, Popovic B, et al. Development of nano machining techniques to bridge the terahertz gap[C]//2016 IEEE International Vacuum Electronics Conference (IVEC). 2016: 1-2.
    [8] Scott A W. The printed circuit TWT[C]//1972 International Electron Devices Meeting. 1972: 62.
    [9] Potter B R, Scott A W, Tancredi J J. High-power printed circuit traveling wave tubes[C]//1973 International Electron Devices Meeting. 1973: 521-524.
    [10] Wang Zhanliang, Liu Xing, Hu Qiang, et al. A Ka-band angular log-periodic meander-line SWS supported by diamond rods[J]. IEEE Transactions on Electron Devices, 2022, 69(3): 1374-1379. doi: 10.1109/TED.2022.3141037
    [11] Xu Duo, Wang Shaomeng, Wang Zhanliang, et al. Theory and experiment of high-gain modified angular log-periodic folded waveguide slow wave structure[J]. IEEE Electron Device Letters, 2020, 41(8): 1237-1240. doi: 10.1109/LED.2020.3000759
    [12] Bai Ningfeng, Gu Leilei, Shen Changshen, et al. S-shaped microstrip meander-line slow-wave structure for W-band traveling-wave tube[C]//2013 IEEE 14th International Vacuum Electronics Conference (IVEC). 2013: 1-2.
    [13] Ding Chong, Wei Yanyu, Wang Yuanyuan, et al. 2-dimensional microstrip meander-line for broad band planar TWTs[C]//2016 IEEE International Vacuum Electronics Conference (IVEC). 2016: 1-2.
    [14] Galdetskiy A, Rakova E. New slow wave structure for W-band TWT[C]//2017 Eighteenth International Vacuum Electronics Conference (IVEC). 2017: 1-2.
    [15] Su Liangxin. Research on W-band banding electron injection microstrip Meander-Line TWT[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
    [16] Wang Shaomeng, Aditya S, Xia Xin, et al. Ka-band symmetric v-shaped meander-line slow wave structure[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4650-4657. doi: 10.1109/TPS.2019.2940254
    [17] Kumar M M A, Aditya S, Zhao Chen. Transmission characteristics of planar tape-helix: simulation and measurements[C]//2018 IEEE International Vacuum Electronics Conference (IVEC). 2018: 343-344.
    [18] Starodubov A V, Serdobintsev A A, Pavlov A M, et al. Study of electromagnetic parameters of a V-band planar meander slow-wave structure[C]//2018 IEEE International Vacuum Electronics Conference (IVEC). 2018: 421-422.
    [19] Nozhkin D, Starodubov A, Kozhevnikov I, et al. Improved laser microprocessing of 2D planar microstrip slow-wave structures for millimeter-band vacuum microelectronic devices[C]//2023 24th International Vacuum Electronics Conference (IVEC). 2023: 1-2.
    [20] Wang Hexin, Wang Shaomeng, Wang Zhanliang, et al. Dielectric-supported staggered dual meander-line slow wave structure for an E-band TWT[J]. IEEE Transactions on Electron Devices, 2021, 68(1): 369-375. doi: 10.1109/TED.2020.3040143
    [21] Pchelnikov Y N. Double-zigzag slow-wave structure for a plane TWT[C]//2018 IEEE International Vacuum Electronics Conference (IVEC). 2018: 93-94.
    [22] Sumathy M, Augustin D, Datta S K, et al. Design and RF characterization of W-band meander-line and folded-waveguide slow-wave structures for TWTs[J]. IEEE Transactions on Electron Devices, 2013, 60(5): 1769-1775. doi: 10.1109/TED.2013.2252179
    [23] CST Corp. CST PS Tutorials[EB/OL]. http://www.cstchina.cn/.
    [24] He Xu, Ma Yuncan, Ma Xiao, et al. Research progress of femtosecond laser precision machining technology for precision experiment[J]. High Power Laser and Particle Beams, 2025, 37: 011004.
    [25] Serdobintsev A, et al. Molybdenum-copper alloys as a base material for micro-fabrication planar slow -wave structures of millimeter-band vacuum electron devices[C]//2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). 2020: 809-812.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  10
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-05
  • 修回日期:  2025-06-15
  • 录用日期:  2025-06-05
  • 网络出版日期:  2025-07-02

目录

    /

    返回文章
    返回