-
摘要: 微带行波管(TWTs)因其在通信、国防及各类工业领域的广阔应用前景而备受关注。报道了一种基于U形悬置微带线慢波结构(SWS)的W波段小型化双通道行波管,详细论述了慢波结构的高频特性,并通过结构调整优化了其传输特性。采用18.8 kV、0.1 A的电子注进行粒子模拟(PIC)计算表明,该双通道行波管可实现18 W的输出功率,对应增益14 dB。最后,采用三种基底材料(Rogers
5880 、石英和金刚石)开展加工和S参数测试,测试表明,石英基底,光刻加工方法的结果与仿真吻合度最高。Abstract: Microstrip Traveling Wave Tubes (TWTs) have garnered significant attention due to their potential applications in communication, defense, and industrial systems. This paper presents a compact W-band dual-channel TWT, utilizing a U-shaped microstrip meander line slow wave structure (SWS). High-frequency characteristics are analyzed through simulation and cold tests. The results demonstrate that adjusting structural parameters effectively optimizes the S-parameters. Particle-in-cell (PIC) simulations with an 18.8 kV, 0.1 A electron beam predict an output power of 18 W with a gain of 14 dB. Experimental measurements of S-parameters are conducted using three substrate materials: Rogers5880 , quartz, and diamond. The quartz substrate exhibits the closest agreement with simulation results. The results advance the development of the microstrip TWTs for high-data-rate communication systems.-
Key words:
- TWT /
- mm wave /
- meander line /
- multi-channel amplifier
-
Table 1. The PIC parameters
voltage of the electron
beam, U/kVcurrent of the electron
beam, I/Aradius of circle
beam, Rbeam/mmmagnetic field,
Bz/Tinput power,
Pin/mW18.8 0.1 0.17 0.5 720 -
[1] Booske J. Vacuum electronic sources for high power terahertz-regime radiation[C]//2011 IEEE International Vacuum Electronics Conference (IVEC). 2011: 11. [2] Wang Zhanliang, Wang Huanyu, He Ziyuan, et al. S band radial beam coaxial grating backward wave oscillator[J]. High Power Laser and Particle Beams, 2023, 35: 113001. [3] Komm D S, Benton R T, Limburg H C, et al. Advances in space TWT efficiencies[J]. IEEE Transactions on Electron Devices, 2001, 48(1): 174-176. doi: 10.1109/16.892186 [4] Wang Zhanliang, Xu Xiong, Gong Yubin, et al. Simulation on W-band sheet beam rectangular waveguide grating backward-wave oscillator[J]. High Power Laser and Particle Beams, 2015, 27: 083005. [5] Wang Shaomeng, Cao Zan, Hou Yan, et al. A novel angular log-periodic micro-strip meander-line slow wave structure for low-voltage and wideband traveling wave tube[C]//2013 IEEE 14th International Vacuum Electronics Conference (IVEC). 2013: 1-2. [6] Ulisse G, Krozer V. W-band traveling wave tube amplifier based on planar slow wave structure[J]. IEEE Electron Device Letters, 2017, 38(1): 126-129. doi: 10.1109/LED.2016.2627602 [7] Himes L, Gamzina D, Popovic B, et al. Development of nano machining techniques to bridge the terahertz gap[C]//2016 IEEE International Vacuum Electronics Conference (IVEC). 2016: 1-2. [8] Scott A W. The printed circuit TWT[C]//1972 International Electron Devices Meeting. 1972: 62. [9] Potter B R, Scott A W, Tancredi J J. High-power printed circuit traveling wave tubes[C]//1973 International Electron Devices Meeting. 1973: 521-524. [10] Wang Zhanliang, Liu Xing, Hu Qiang, et al. A Ka-band angular log-periodic meander-line SWS supported by diamond rods[J]. IEEE Transactions on Electron Devices, 2022, 69(3): 1374-1379. doi: 10.1109/TED.2022.3141037 [11] Xu Duo, Wang Shaomeng, Wang Zhanliang, et al. Theory and experiment of high-gain modified angular log-periodic folded waveguide slow wave structure[J]. IEEE Electron Device Letters, 2020, 41(8): 1237-1240. doi: 10.1109/LED.2020.3000759 [12] Bai Ningfeng, Gu Leilei, Shen Changshen, et al. S-shaped microstrip meander-line slow-wave structure for W-band traveling-wave tube[C]//2013 IEEE 14th International Vacuum Electronics Conference (IVEC). 2013: 1-2. [13] Ding Chong, Wei Yanyu, Wang Yuanyuan, et al. 2-dimensional microstrip meander-line for broad band planar TWTs[C]//2016 IEEE International Vacuum Electronics Conference (IVEC). 2016: 1-2. [14] Galdetskiy A, Rakova E. New slow wave structure for W-band TWT[C]//2017 Eighteenth International Vacuum Electronics Conference (IVEC). 2017: 1-2. [15] Su Liangxin. Research on W-band banding electron injection microstrip Meander-Line TWT[D]. Chengdu: University of Electronic Science and Technology of China, 2022. [16] Wang Shaomeng, Aditya S, Xia Xin, et al. Ka-band symmetric v-shaped meander-line slow wave structure[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4650-4657. doi: 10.1109/TPS.2019.2940254 [17] Kumar M M A, Aditya S, Zhao Chen. Transmission characteristics of planar tape-helix: simulation and measurements[C]//2018 IEEE International Vacuum Electronics Conference (IVEC). 2018: 343-344. [18] Starodubov A V, Serdobintsev A A, Pavlov A M, et al. Study of electromagnetic parameters of a V-band planar meander slow-wave structure[C]//2018 IEEE International Vacuum Electronics Conference (IVEC). 2018: 421-422. [19] Nozhkin D, Starodubov A, Kozhevnikov I, et al. Improved laser microprocessing of 2D planar microstrip slow-wave structures for millimeter-band vacuum microelectronic devices[C]//2023 24th International Vacuum Electronics Conference (IVEC). 2023: 1-2. [20] Wang Hexin, Wang Shaomeng, Wang Zhanliang, et al. Dielectric-supported staggered dual meander-line slow wave structure for an E-band TWT[J]. IEEE Transactions on Electron Devices, 2021, 68(1): 369-375. doi: 10.1109/TED.2020.3040143 [21] Pchelnikov Y N. Double-zigzag slow-wave structure for a plane TWT[C]//2018 IEEE International Vacuum Electronics Conference (IVEC). 2018: 93-94. [22] Sumathy M, Augustin D, Datta S K, et al. Design and RF characterization of W-band meander-line and folded-waveguide slow-wave structures for TWTs[J]. IEEE Transactions on Electron Devices, 2013, 60(5): 1769-1775. doi: 10.1109/TED.2013.2252179 [23] CST Corp. CST PS Tutorials[EB/OL]. http://www.cstchina.cn/. [24] He Xu, Ma Yuncan, Ma Xiao, et al. Research progress of femtosecond laser precision machining technology for precision experiment[J]. High Power Laser and Particle Beams, 2025, 37: 011004. [25] Serdobintsev A, et al. Molybdenum-copper alloys as a base material for micro-fabrication planar slow -wave structures of millimeter-band vacuum electron devices[C]//2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). 2020: 809-812. -