留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂大地结构下极端感应地电场对电网电压稳定性的影响

刘民周 杨一帆 窦青 谢彦召 王硕威 王文卓

刘民周, 杨一帆, 窦青, 等. 复杂大地结构下极端感应地电场对电网电压稳定性的影响[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250011
引用本文: 刘民周, 杨一帆, 窦青, 等. 复杂大地结构下极端感应地电场对电网电压稳定性的影响[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250011
Liu Minzhou, Yang Yifan, Dou Qing, et al. Effects of extreme geoelectric fields on power system voltage stability considering complex earth conductivity structures[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250011
Citation: Liu Minzhou, Yang Yifan, Dou Qing, et al. Effects of extreme geoelectric fields on power system voltage stability considering complex earth conductivity structures[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250011

复杂大地结构下极端感应地电场对电网电压稳定性的影响

doi: 10.11884/HPLPB202537.250011
基金项目: 国家重点研发计划项目(2023YFE0115700)、XX基础研究项目(2021-xx-xx-046-00)
详细信息
    作者简介:

    刘民周,minzhou.liu@xjtu.edu.cn

    通讯作者:

    谢彦召,yzxie@xjtu.edu.cn

  • 中图分类号: TM41

Effects of extreme geoelectric fields on power system voltage stability considering complex earth conductivity structures

  • 摘要: 高空电磁脉冲晚期成分(HEMP E3)和地磁暴通过地磁感应作用在地表形成感应地电场,其在输电系统中产生的低频地磁感应电流诱发变压器直流偏磁,可能对电力系统电压稳定性构成潜在威胁。然而,在现有的HEMP E3效应评估研究中,通常假定大地呈均匀或一维分层结构,未充分考虑大地电导率横向差异对HEMP E3感应地电场的影响,因而在海岸等地质条件复杂的区域,难以准确评估电网面临的电磁风险。基于有限元法建立了HEMP E3感应地电场的三维计算模型,研究了复杂大地电性结构对HEMP E3感应地电场时空分布的影响规律,进而采用电磁暂态仿真方法评估了极端感应地电场冲击下的电力系统电压稳定性。仿真结果表明,在海岸等大地电导率分界面附近,HEMP E3感应地电场的幅值和持续时间发生显著变化,从而对电力系统电压稳定性评估结果产生较大影响,该方法为开展复杂地质条件下基础设施的HEMP效应评估和防护提供了重要依据。
  • 图  1  三维大地电性结构示意图

    Figure  1.  Schematic diagram of 3D earth conductivity structure

    图  2  在0.001Hz频点下三维模型和一维分层模型所得的海岸附近感应地电场结果对比

    Figure  2.  Comparison of induced electric field results near the coast obtained from 3D and 1D layered models at 0.001Hz

    图  3  H极化情况下三维和一维大地模型陆地侧距离海岸不同距离处的结果对比

    Figure  3.  Comparison of 3D and 1D earth model results at different distances inland from the coast in the case of H-polarization

    图  4  E极化情况下三维和一维大地模型陆地侧距离海岸不同距离处的结果对比

    Figure  4.  Comparison of 3D and 1D earth model results at different distances inland from the coast in the case of E-polarization

    图  5  同步发电机励磁系统的构成

    Figure  5.  Block diagram of a synchronous generator excitation control system

    图  6  含单台同步发电机的电力系统算例接线图

    Figure  6.  Diagram of the power system test case with a single synchronous generator

    图  7  地磁暴作用下输电线路感应电压和负载母线交流电压

    Figure  7.  Induced voltage on the transmission line and AC voltage of the load bus under geomagnetic storms

    图  8  不同大地模型情况下电力系统对HEMP E3的响应

    Figure  8.  Response of power system to HEMP E3 in the cases of different earth conductivity structures

    图  9  不同励磁控制参数下电力系统对HEMP E3的响应

    Figure  9.  Response of power system with varying excitation control parameters to HEMP E3

    图  10  不同大地电阻率ρ情况下IEEE 118节点系统母线85处变压器和同步调相机的响应

    Figure  10.  Response of the load transformer and the synchronous condenser at bus 85 in IEEE 118-bus test case with varying earth resistivity ρ

    表  1  典型一维分层大地电导率结构[30]

    Table  1.   Typical 1D layered earth conductivity structure[30]

    layer conductivity/(S·m−1) thickness/km
    1 0.0005 30
    2 0.0013 60
    3 0.00025 60
    4 0.3
    下载: 导出CSV
  • [1] 谢彦召, 刘民周, 陈宇浩. 国家关键基础设施电磁恢复力[J]. 强激光与粒子束, 2019, 31:070001 doi: 10.11884/HPLPB201931.190202

    Xie Yanzhao, Liu Minzhou, Chen Yuhao. Electromagnetic resilience of critical national infrastructure[J]. High Power Laser and Particle Beams, 2019, 31: 070001 doi: 10.11884/HPLPB201931.190202
    [2] 陈宇浩, 谢彦召, 刘民周, 等. 高空电磁脉冲作用下电力系统主要效应模式分析[J]. 强激光与粒子束, 2019, 31:070007 doi: 10.11884/HPLPB201931.190184

    Chen Yuhao, Xie Yanzhao, Liu Minzhou, et al. Analysis of high-altitude electromagnetic effect models on power system[J]. High Power Laser and Particle Beams, 2019, 31: 070007 doi: 10.11884/HPLPB201931.190184
    [3] 秦锋, 陈伟, 毛从光, 等. 电力系统高空电磁脉冲效应研究综述[J]. 现代应用物理, 2023, 14(3):12-27

    Qin Feng, Chen Wei, Mao Congguang, et al. Review of high altitude electromagnetic pulse effects on power system[J]. Modern Applied Physics, 2023, 14(3): 12-27
    [4] Electromagnetic compatibility (EMC) —Part 2: environment—section 9: description of HEMP environment—radiated disturbance: IEC61000-2-9[S]. International Electrotechnical Commission, 1996.
    [5] Kruse V J, Rackliffe G B, Barnes P R. Load flow studies in the presence of magnetohydrodynamic electromagnetic pulse[J]. IEEE Transactions on Power Delivery, 1990, 5(2): 1158-1163. doi: 10.1109/61.53135
    [6] 王建国. 高空核爆炸磁流体动力学电磁脉冲[J]. 强激光与粒子束, 2024, 36:073001 doi: 10.11884/HPLPB202436.240105

    Wang Jianguo. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36: 073001 doi: 10.11884/HPLPB202436.240105
    [7] 刘春明, 王红梅, 王璇. 多次磁暴下特高压电网GIC统计规律研究[J]. 中国电机工程学报, 2019, 39(15):4606-4614

    Liu Chunming, Wang Hongmei, Wang Xuan. Statistical analysis of geomagnetically induced currents in UHV power grids under multiple geomagnetic storms[J]. Proceedings of the CSEE, 2019, 39(15): 4606-4614
    [8] Liu Minzhou, Xie Yanzhao, Chen Yuhao, et al. Modeling the 10, 000-year geomagnetic disturbance scenarios based on extreme value analysis[J]. IEEE Letters on Electromagnetic Compatibility Practice and Applications, 2020, 2(4): 156-160. doi: 10.1109/LEMCPA.2020.3042457
    [9] Liu Minzhou, Xie Yanzhao, Yang Yifan, et al. Reduced nodal admittance matrix method for probabilistic GIC analysis in power grids[J]. IEEE Transactions on Power Systems, 2023, 38(5): 4950-4953. doi: 10.1109/TPWRS.2023.3280392
    [10] 刘民周. 交流输电网和天然气管网地磁感应建模与高效算法研究[D]. 西安: 西安交通大学, 2024

    Liu Minzhou. Study on modeling and efficient algorithms for geomagnetic induction in AC transmission grids and gas pipeline networks[D]. Xi’an: Xi’an Jiaotong University, 2024
    [11] 余同彬, 周璧华. 近地长电缆对高空电磁脉冲晚期部分的响应[J]. 强激光与粒子束, 2003, 15(12):1237-1240

    Yu Tongbin, Zhou Bihua. Response of long lines to late-time HEMP[J]. High Power Laser and Particle Beams, 2003, 15(12): 1237-1240
    [12] 高志伟, 周于翔, 朱思熠. 晚期HEMP作用下铁路牵引供电系统GIC算法研究[J]. 强激光与粒子束, 2021, 33:093001 doi: 10.11884/HPLPB202133.210061

    Gao Zhiwei, Zhou Yuxiang, Zhu Siyi. Study on GIC algorithm of railway traction power supply system under action of late time HEMP[J]. High Power Laser and Particle Beams, 2021, 33: 093001 doi: 10.11884/HPLPB202133.210061
    [13] 赵志斌, 柯俊吉, 马丽斌. 高空核电磁脉冲晚期效应对电网稳定性影响的研究[J]. 电气技术, 2015(9):16-19 doi: 10.3969/j.issn.1673-3800.2015.09.004

    Zhao Zhibin, Ke Junji, Ma Libin. Research on impact of late-time HEMP to stability of power grids[J]. Electrical Engineering, 2015(9): 16-19 doi: 10.3969/j.issn.1673-3800.2015.09.004
    [14] 杨一帆, 刘民周, 谢彦召, 等. 高空电磁脉冲晚期成分作用下500kV变压器无功损耗仿真研究[J]. 电工技术学报, 2024, 39(1):267-277

    Yang Yifan, Liu Minzhou, Xie Yanzhao, et al. Simulation research on reactive power loss characteristic of 500 kV transformer under late-time high-altitude electromagnetic pulses[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 267-277
    [15] 刘彤宇, 李丽, 王亚楠, 等. 高空电磁脉冲晚期环境下电力系统效应研究进展[J]. 强激光与粒子束, 2024, 36:055020 doi: 10.11884/HPLPB202436.240042

    Liu Tongyu, Li Li, Wang Ya’nan, et al. Research progress on power system effects in late-time high-altitude electromagnetic pulses environment[J]. High Power Laser and Particle Beams, 2024, 36: 055020 doi: 10.11884/HPLPB202436.240042
    [16] 田君杨, 蒋连钿, 李海勇, 等. 高空核爆电磁脉冲晚期效应对变压器的影响[J]. 电波科学学报, 2024, 39(5):870-877

    Tian Junyang, Jiang Liandian, Li Haiyong, et al. Effect of strong electromagnetic pulse E3 environment on transformer[J]. Chinese Journal of Radio Science, 2024, 39(5): 870-877
    [17] 王亚楠, 田逸涵, 马志钦, 等. 模拟极端地磁感应电流注入下缩比变压器电-磁-热效应试验研究[J]. 广东电力, 2024, 37(11):9-17

    Wang Ya’nan, Tian Yihan, Ma Zhiqin, et al. Experimental study on electro-magnetic-heat effects of scaled-down transformers under simulated extreme geomagnetic induced current injection[J]. Guangdong Electric Power, 2024, 37(11): 9-17
    [18] Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack: critical national infrastructures[R]. 2008.
    [19] Gilbert J, Kappenman J, Radasky W, et al. The late-time (E3) high-altitude electromagnetic pulse (HEMP) and its impact on the United States power grid[R]. Meta-R-321, 2010.
    [20] Overbye T J, Hutchins T R, Shetye K, et al. Integration of geomagnetic disturbance modeling into the power flow: A methodology for large-scale system studies[C]//2012 North American Power Symposium (NAPS). 2012: 1-7.
    [21] Hutchins T R, Overbye T J. Power system dynamic performance during the late-time (E3) high-altitude electromagnetic pulse[C]//2016 Power Systems Computation Conference (PSCC). 2016: 1-6.
    [22] Lee R H W, Shetye K S, Birchfield A B, et al. Using detailed ground modeling to evaluate electric grid impacts of late-time high-altitude electromagnetic pulses (E3 HEMP)[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1549-1557. doi: 10.1109/TPWRS.2018.2878533
    [23] Magnetohydrodynamic electromagnetic pulse assessment of the continental United States electric grid: voltage stability analysis[R]. EPRI, Palo Alto, CA: 2017. 3002011969.
    [24] Kim S, Jeong I. Vulnerability assessment of Korean electric power systems to late-time (E3) high-altitude electromagnetic pulses[J]. Energies, 2019, 12(17): 3335. doi: 10.3390/en12173335
    [25] 王泽忠, 司远, 刘连光. 地磁暴对电力系统稳定性的影响[J]. 电工技术学报, 2022, 37(7):1780-1788

    Wang Zezhong, Si Yuan, Liu Lianguang. Influence of geomagnetic storms on the stability of power system[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1780-1788
    [26] 辛文凯, 王泽忠, 刘春明, 等. 地磁暴影响下特高压交流电网电压稳定性量化评估方法[J]. 电工技术学报, 2023, 38(21):5771-5780

    Xin Wenkai, Wang Zezhong, Liu Chunming, et al. Quantitative evaluation method of voltage stability of UHV AC power network under geomagnetic storm[J]. Transactions of China Electrotechnical Society, 2023, 38(21): 5771-5780
    [27] Liu Chunming, Wang Xuan, Zhang Shuming, et al. Effects of lateral conductivity variations on geomagnetically induced currents: H-polarization[J]. IEEE Access, 2019, 7: 6310-6318. doi: 10.1109/ACCESS.2018.2889462
    [28] Liu Minzhou, Xie Yanzhao, Dong Ning, et al. Numerical analysis of nonuniform geoelectric field impacts on geomagnetic induction in pipeline networks[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(4): 999-1009. doi: 10.1109/TEMC.2022.3158885
    [29] 王泽忠, 司远, 刘连光. 考虑地下各向异性介质的磁暴感应地电场研究[J]. 电工技术学报, 2022, 37(5):1070-1077,1114

    Wang Zezhong, Si Yuan, Liu Lianguang. Study on the induced geoelectric field of geomagnetic storm considering the underground anisotropic medium[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1070-1077,1114
    [30] 郑宽. 大电网地磁感应电流影响因素及建模方法研究[D]. 北京: 华北电力大学, 2014

    Zheng Kuan. Research on influence factors and modelling methods of geomagnetically induced currents in large power grid[D]. Beijing: North China Electric Power University, 2014
    [31] Jankee P, Oyedokun D T O, Chisepo H. Synchronous generator modelling and excitation voltage control for GIC studies[C]//2021 13th IEEE PES Asia Pacific Power & Energy Engineering Conference (APPEEC). 2021: 1-6.
    [32] Jankee P, Oyedokun D T O, Chisepo H K. Dynamic response of power systems with real GICs: Impact on generator excitation control[J]. IEEE Transactions on Power Delivery, 2022, 37(6): 4911-4922. doi: 10.1109/TPWRD.2022.3162881
    [33] Kundur P. Power system stability and control[M]. New York: McGraw-Hill, 1994.
    [34] IEEE Std 421.5-2016, IEEE recommended practice for excitation system models for power system stability studies[S].
    [35] Haddadi A, Rezaei-Zare A, Gérin-Lajoie L, et al. A modified IEEE 118-bus test case for geomagnetic disturbance studies–Part I: Model data[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(3): 955-965. doi: 10.1109/TEMC.2019.2920271
    [36] TPL-007-4, Transmission system planned performance for geomagnetic disturbance events[S].
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  12
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-10
  • 修回日期:  2025-04-03
  • 录用日期:  2025-04-24
  • 网络出版日期:  2025-04-23

目录

    /

    返回文章
    返回