Field-line coupling characteristics of relay protection device under strong electromagnetic pulse
-
摘要: 强电磁脉冲会以场-传输线耦合的方式在线缆上形成纳秒级上升沿的脉冲传导骚扰,对线缆末端的设备构成较大威胁。针对某型号继电保护装置,先测试其抗扰度性能,然后开展场线耦合路径下的高空电磁脉冲辐照试验,获得了装置端口的耦合特性。耦合到信号端口的共模电流达32.45 A及以上时引发了该装置的误动作。同时开展了脉冲电流注入试验,注入信号端口的脉冲电流达36.92 A及以上时该装置误动作,进一步确定了装置端口的临界干扰阈值。通过建立变电站内二次电缆和保护屏柜内信号线缆的场线耦合模型,计算了不同场景下高空电磁脉冲产生的耦合量,提出了场线耦合的防护重点。研究结果可为继电保护装置在强电磁脉冲环境下的抗干扰能力评估与防护技术提供参考。Abstract: Strong electromagnetic pulse can form nanosecond rising edge pulse conduction disturbance on the cable in the form of field-transmission line coupling, which poses a great threat to the equipment at the end of the cable. For a certain type of relay protection device, the immunity performance is tested first, and then the high-altitude electromagnetic pulse irradiation test under the field-line coupling path is carried out to obtain the coupling characteristics of the device port. When the common mode current coupled to the signal port reaches 32.45A and above, the device malfunctions. At the same time, the pulse current injection test is carried out. When the pulse current injected into the signal port reaches 36.92A and more, the device malfunctions, further confirming the critical interference threshold of the device port. Through the establishment of the field-line coupling model of the secondary cable in the substation and the signal cable in the protective panel cabinet, the coupling quantity of high-altitude electromagnetic pulse in different scenarios is calculated, and the key points of field-line coupling protection are proposed. The research results can provide reference for the evaluation of anti-interference ability and protection technology of relay protection devices in strong electromagnetic pulse environments.
-
表 1 继电保护装置非正常情况
Table 1. Abnormal condition of relay protection device
output voltage of EFT/V test phenomenon 500 no phenomenon 800 no phenomenon 1000 the main screen goes back to“protection start” 1500 do not attempt single-phase trip, directly perform three-phase trip 2000 directly perform three-phase trip and send “accelerated intertrip” order 表 2 高空电磁脉冲试验结果
Table 2. High altitude electromagnetic pulse test results
field intensity/(kV/m) common mode current on signal line/A test phenomenon 4.50 6.99 —— 6.41 10.09 —— 9.06 13.62 —— 14.43 22.57 —— 19.51 29.91 —— 21.68 31.18 —— 23.17 32.45 maloperation/extended operation time 24.25 33.98 maloperation 25.69 36.10 maloperation 25.58 36.95 maloperation 29.83 42.45 maloperation 31.23 41.73 maloperation 34.40 45.12 maloperation 表 3 脉冲电流注入试验结果
Table 3. pulse current injection test results
pulse injection source voltage/kV common mode current on signal line/A test phenomenon 16 19.52 —— 18 22.40 —— 20 25.28 —— 22 30.10 —— 24 34.90 —— 26 36.70 —— 28 36.92 maloperation 30 42.68 maloperation 32 47.16 maloperation 表 4 场线耦合仿真结果
Table 4. Field line coupling simulation results
cable type shielding current peak value/A core current peak value/A secondary cable grounded on both sides of shield layer and armor layer 37.11 0.17 secondary cable grounded on both sides of shield layer 50.15 0.19 secondary cable grounded on one side of the shield layer 50.16 11.55 ungrounded secondary cable —— 11.55 signal cable in cabinet —— 0.08 -
[1] 刘彤宇, 李丽, 王亚楠, 等. 高空电磁脉冲晚期环境下电力系统效应研究进展[J]. 强激光与粒子束, 2024, 36:055020 doi: 10.11884/HPLPB202436.240042Liu Tongyu, Li Li, Wang Ya’nan, et al. Research progress on power system effects in late-time high-altitude electromagnetic pulses environment[J]. High Power Laser and Particle Beams, 2024, 36: 055020 doi: 10.11884/HPLPB202436.240042 [2] 秦锋, 王旭桐, 陈伟, 等. 高空电磁脉冲作用下配电变压器瞬态响应与失效机理[J]. 中国电机工程学报, 2023, 43(17):6924-6932Qin Feng, Wang Xutong, Chen Wei, et al. Transient response and failure mechanism of distribution transformer under high-altitude electromagnetic pulse[J]. Proceedings of the CSEE, 2023, 43(17): 6924-6932 [3] 邱爱慈, 别朝红, 李更丰, 等. 强电磁脉冲威胁与弹性电力系统发展战略[J]. 现代应用物理, 2021, 12:030101Qiu Aici, Bie Zhaohong, LI Gengfeng, et al. HEMP threat and development strategy of resilient power system[J]. Modern Applied Physics, 2021, 12: 030101 [4] 李祥超, 王贤超. 输电线缆耦合强电磁脉冲特性的分析[J]. 电瓷避雷器, 2024(5):1-11Li Xiangchao, Wang Xianchao. Characteristics of power transmission cable coupled strong electromagnetic pulse[J]. Insulators and Surge Arresters, 2024(5): 1-11 [5] 克莱顿 R. 保罗. 多导体传输线分析[M]. 杨晓宪, 郑涛, 译. 2版. 北京: 中国电力出版社, 2013: 1-372Paul C R. Analysis of multiconductor transmission lines[M]. Yang Xiaoxian, Zheng Tao, trans. 2nd ed. Beijing: China Electric Power Press, 2013: 1-372 [6] Taylor C, Satterwhite R, Harrison C. The response of a terminated two-wire transmission line excited by a nonuniform electromagnetic field[J]. IEEE Transactions on Antennas and Propagation, 1965, 13(6): 987-989. doi: 10.1109/TAP.1965.1138574 [7] Agrawal A K, Price H J, Gurbaxani S H. Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field[J]. IEEE Transactions on Electromagnetic Compatibility, 1980, EMC-22(2): 119-129. doi: 10.1109/TEMC.1980.303824 [8] Rachidi F. Formulation of the field-to-transmission line coupling equations in terms of magnetic excitation field[J]. IEEE Transactions on Electromagnetic Compatibility, 1993, 35(3): 404-407. doi: 10.1109/15.277316 [9] 席志豪, 梁涛, 谢彦召, 等. 基于时域BLT方程的带绝缘线缆束场-线耦合模型[J]. 高电压技术, 2024, 50(2):758-764Xi Zhihao, Liang Tao, Xie Yanzhao, et al. Field-to-line coupling model for insulated wiring bundle based on time-domain BLT equation[J]. High Voltage Engineering, 2024, 50(2): 758-764 [10] Paul C R. A SPICE model for multiconductor transmission lines excited by an incident electromagnetic field[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36(4): 342-354. doi: 10.1109/15.328864 [11] 胡榕, 崔翔, 陈维江, 等. 一种电磁场-传输线组合的时域有限差分方法[J]. 华北电力大学学报, 2015, 42(3):1-7,30Hu Rong, Cui Xiang, Chen Weijiang, et al. A method of finite difference time domain combined with electromagnetic field and transmission lines[J]. Journal of North China Electric Power University, 2015, 42(3): 1-7,30 [12] 李宝忠, 何金良, 周辉, 等. 核电磁脉冲环境中传输线的电磁干扰[J]. 高电压技术, 2009, 35(11):2753-2758Li Baozhong, He Jinliang, Zhou Hui, et al. Eletromagnetic interference of transmisssion line in HEMP environment[J]. High Voltage Engineering, 2009, 35(11): 2753-2758 [13] 龚渝涵, 李俊娜, 田君杨, 等. 典型变电站沟内线缆HEMP耦合仿真研究[J]. 智慧电力, 2024, 52(4):47-53,99 doi: 10.3969/j.issn.1673-7598.2024.04.008Gong Yuhan, Li Junna, Tian Junyang, et al. Simulation study on HEMP coupling of cables in the trench of typical substation[J]. Smart Power, 2024, 52(4): 47-53,99 doi: 10.3969/j.issn.1673-7598.2024.04.008 [14] 张卫东, 陈沛龙, 陈维江, 等. 特高压GIS变电站VFTO对二次电缆骚扰电压的实测与仿真[J]. 中国电机工程学报, 2013, 33(16):187-196Zhang Weidong, Chen Peilong, Chen Weijiang, et al. Measurement and simulation of disturbance voltage generated by VFTO in UHV GIS substation on the secondary cables[J]. Proceedings of the CSEE, 2013, 33(16): 187-196 [15] 陈维江, 赵军, 边凯, 等. GIS变电站开关操作瞬态电磁骚扰研究进展[J]. 中国电机工程学报, 2019, 39(16):4935-4948Chen Weijiang, Zhao Jun, Bian Kai, et al. Research progress on transient electromagnetic disturbance due to switching operations in GIS substation[J]. Proceedings of the CSEE, 2019, 39(16): 4935-4948 [16] 潘晓东, 魏光辉, 万浩江, 等. 电子设备电磁辐射敏感度测试相关问题研究[J]. 强激光与粒子束, 2020, 32:073002Pan Xiaodong, Wei Guanghui, Wan Haojiang, et al. Research on several test issues of electromagnetic radiation susceptibility for electronic equipment[J]. High Power Laser and Particle Beams, 2020, 32: 073002 [17] 潘晓东, 魏光辉, 卢新福, 等. 差模定向注入等效替代强电磁脉冲辐射效应试验方法[J]. 电波科学学报, 2017, 32(2):151-160Pan Xiaodong, Wei Guanghui, Lu Xinfu, et al. Test method of using differential mode directional injection as a substitute for high intensity electromagnetic pulse radiation[J]. Chinese Journal of Radio Science, 2017, 32(2): 151-160 [18] 黄蕙. 微机继电保护硬件系统的抗电磁干扰设计策略[J]. 电力系统保护与控制, 2010, 38(20):220-224Huang Hui. Design strategy of electromagnetic anti-jamming for hardware system of microcomputer relay protection[J]. Power System Protection and Control, 2010, 38(20): 220-224 [19] 郑玉平, 吕鹏飞, 李斌, 等. 新型电力系统继电保护面临的问题与解决思路[J]. 电力系统自动化, 2023, 47(22):3-15Zheng Yuping, Lyu Pengfei, Li Bin, et al. Problems faced by relay protection in new power system and their solution ideas[J]. Automation of Electric Power Systems, 2023, 47(22): 3-15 [20] GB/T 17799.5-2012, 电磁兼容 通用标准 室内设备高空电磁脉冲(HEMP)抗扰度[S]GB/T 17799.5-2012, Electromagnetic compatibility (EMC)-Generic standards-HEMP immunity for indoor equipment[S] -