留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4 MV静电高压离子加速器高压发生器优化设计

魏哲宇 李中平 张子民 申晓康 曹树春

魏哲宇, 李中平, 张子民, 等. 4 MV静电高压离子加速器高压发生器优化设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250016
引用本文: 魏哲宇, 李中平, 张子民, 等. 4 MV静电高压离子加速器高压发生器优化设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250016
Wei Zheyu, Li Zhongping, Zhang Zimin, et al. Optimized design of high-voltage generator for 4 MV electrostatic high-voltage ion accelerator[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250016
Citation: Wei Zheyu, Li Zhongping, Zhang Zimin, et al. Optimized design of high-voltage generator for 4 MV electrostatic high-voltage ion accelerator[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250016

4 MV静电高压离子加速器高压发生器优化设计

doi: 10.11884/HPLPB202537.250016
基金项目: 甘肃省重点人才项目(2025RCXM072)
详细信息
    作者简介:

    魏哲宇,weizheyu@impcas.ac.cn

    通讯作者:

    曹树春,caosch@impcas.ac.cn

  • 中图分类号: TL52

Optimized design of high-voltage generator for 4 MV electrostatic high-voltage ion accelerator

  • 摘要: 中国科学院近代物理研究所近期开展了一台静电高压型离子加速器的研制工作。高压发生器作为该类型加速器的核心部件,要求达到最高工作电压4.2 MV、电压不稳定度小于±0.1%、纹波系数小于±0.1%的性能指标。针对设计指标,首先通过模拟仿真对高压发生器整体结构进行了设计与优化,从而支撑提升设备运行的安全性和稳定性。针对高压发生器中的重要组成部分,高频变压器部分,采用场路耦合的方法对其电路结构和电气参数进行了分析与优化,并改进了变压器的散热结构,从而确保高频变压器的输出稳定。最后介绍了高压发生器的高精度稳压设计方案,为提升高压发生器控制性能,进一步保证设备安全稳定运行提供了思路。研究结果表明,高压发生器设计能够满足项目技术指标的要求。
  • 图  1  高压发生器结构示意图

    Figure  1.  High-voltage generator structure schematic

    图  2  电场模拟结果

    Figure  2.  Electric field simulation results

    图  3  高频变压器结构示意图

    Figure  3.  Structure diagram of the High-Frequency Transformer Structure

    图  4  空芯变压器等效电路

    Figure  4.  Equivalent circuit of the air-cored transformer

    图  5  节点电压监测结果

    Figure  5.  Node voltage monitoring results

    图  6  螺线管变压器简化模型

    Figure  6.  Solenoid transformer model

    图  7  螺线管变压器温度场模拟结果

    Figure  7.  Temperature field simulation results of the solenoid transformer

    图  8  冷却系统结构示意图

    Figure  8.  Cooling system structure schematic

    图  9  优化模型模拟结果

    Figure  9.  Simulation results of the optimized model

    图  10  整体电路输出仿真结果

    Figure  10.  Overall circuit output simulation results

    表  1  高压发生器系统电性能指标参数

    Table  1.   Electrical performance specifications of the high-voltage generator system

    output voltage/MVmaximum load current/μAoutput voltage range/MVvoltage instability/%ripple factor/%
    design specification4.21 0000.2~4.0<±0.1<±0.1
    acceptance criteria4.0≮1000.2~4.0<±0.1<±0.1
    下载: 导出CSV
  • [1] 徐川, 付恩刚, 高原, 等. 北京大学静电加速器及其应用[J]. 科学通报, 2023, 68(9):1096-1103 doi: 10.1360/TB-2022-1132

    Xu Chuan, Fu Engang, Gao Yuan, et al. Electrostatic accelerator facilities and their applications at Peking University[J]. Chinese Science Bulletin, 2023, 68(9): 1096-1103 doi: 10.1360/TB-2022-1132
    [2] 徐川, 付恩刚. 北京大学1.7MV串列静电加速器的离子注入/辐照实验系统[J]. 原子核物理评论, 2021, 38(4):410-415 doi: 10.11804/NuclPhysRev.38.2021058

    Xu Chuan, Fu Engang. Ion implantation/irradiation system of 1.7MV tandem accelerator at Peking University[J]. Nuclear Physics Review, 2021, 38(4): 410-415 doi: 10.11804/NuclPhysRev.38.2021058
    [3] 芦卓凡. 4MV静电离子加速稳压控制系统设计[D]. 郑州: 郑州大学, 2014

    Lu Zhuofan. The design for 4MeV ionelectrostatic accelerator stablizing voltage system[D]. Zhengzhou: Zhengzhou University, 2014
    [4] Matsuyama S, Miwa M, Toyama S, et al. Improvement of high voltage stability of the dynamitron accelerator for microbeam application using slit feedback system[R]. CYRIC Annual Report, 2019.
    [5] Sen A, Domínguez-Cañizares G, Podaru N C, et al. A high intensity, high stability 3.5 MV Singletron™ accelerator[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 450: 390-395. doi: 10.1016/j.nimb.2018.09.016
    [6] 徐建铭. 加速器原理(修订版)[M]. 北京: 科学出版社, 1974: 14-15

    Xu Jianming. Principles of accelerators (revised edition)[M]. Beijing: Science Press, 1974: 14-15
    [7] Honda S, Yoshihashi S, Tomita S, et al. Development of a Sealed Li target as an accelerator-driven neutron source for Boron neutron capture therapy at Nagoya University[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1040: 167140. doi: 10.1016/j.nima.2022.167140
    [8] Han Jifeng, An Zhu, Zheng Gaoqun, et al. An ion beam facility based on a 3 MV tandetron accelerator in Sichuan University, China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2018, 418: 68-73.
    [9] Uritani A, Menjo Y, Watanabe K, et al. Design of beam shaping assembly for an accelerator-driven BNCT system in Nagoya University[C]//Proceedings of the International Conference on Neutron Optics. 2018.
    [10] Miwa M, Matsuyama S, Toyama S. Development of a high-voltage stabilization system for precision ion beams[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2023, 543: 165101. doi: 10.1016/j.nimb.2023.165101
    [11] 翟兴林. 国外工业辐照加速器的应用及其进展[J]. 核技术, 1987(11):1-5

    Zhai Xinglin. Status and applications of foreign accelerators for radiation processing[J]. Nuclear Techniques, 1987(11): 1-5
    [12] 李民熙, 沙振元, 赖伟全, 等. 3MV20mA高频高压电子加速器研制进展[J]. 核物理动态, 1994, 11(4):57-58,8

    Li Minxi, Sha Zhenyuan, Lai Weiquan, et al. Progress of 3 MV 20 mA Dynamitron project[J]. Nuclear Physics Review, 1994, 11(4): 57-58,8
    [13] GB/T 25306-2010, 辐射加工用电子加速器工程通用规范[S]

    GB/T 25306-2010, Standard of electron accelerator facility engineering for radiation processing[S]
    [14] 赵峰, 高巍, 郭艳君. SF6气体在电力变压器中的应用[J]. 变压器, 2020, 57(4):33-38

    Zhao Feng, Gao Wei, Guo Yanjun. Application of SF6 gas in power transformer[J]. Transformer, 2020, 57(4): 33-38
    [15] 陈佳洱. 加速器物理基础[M]. 北京: 北京大学出版社, 2012: 59-61

    Chen Jia'er. Fundamentals of accelerator physics[M]. Beijing: Peking University Press, 2012: 59-61
    [16] Thompson C C, Cleland M R. Design equations for dynamitron type power supplies in the megavolt range[J]. IEEE Transactions on Nuclear Science, 1969, 16(3): 124-129. doi: 10.1109/TNS.1969.4325195
    [17] Cleland M R, Farrell P. Dynamitrons of the Future[J]. IEEE Transactions on Nuclear Science, 1965, 12(3): 227-234. doi: 10.1109/TNS.1965.4323626
    [18] Thompson C C. Multi-loop feedback system for Dynamitron voltage regulation[J]. IEEE Transactions on Nuclear Science, 1967, 14(3): 169-173. doi: 10.1109/TNS.1967.4324546
    [19] 刘云鹏, 律方成, 李成榕, 等. 基于多导体传输线模型的单相变压器绕组中放电的距离函数法定位[J]. 电工技术学报, 2006, 21(1):115-120 doi: 10.3321/j.issn:1000-6753.2006.01.022

    Liu Yunpeng, Lü Fangcheng, Li Chengrong, et al. Distance function locating partial discharge in single phase transformer winding based on MTL model[J]. Transactions of China Electrotechnical Society, 2006, 21(1): 115-120 doi: 10.3321/j.issn:1000-6753.2006.01.022
    [20] 宋振飞, 王虎, 汤必强. 发动机气缸套温度场分析系统的开发[J]. 合肥工业大学学报(自然科学版), 2022, 45(6):726-729

    Song Zhenfei, Wang Hu, Tang Biqiang. Development of temperature field analysis system for engine cylinder liner[J]. Journal of Hefei University of Technology (Natural Science), 2022, 45(6): 726-729
    [21] 孙振武. 4MV离子静电加速器的研制[D]. 郑州: 郑州大学, 2006

    Sun Zhenwu. Development of a 4MV ion electrostatic accelerator[D]. Zhengzhou: Zhengzhou University, 2006
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  12
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-17
  • 修回日期:  2025-05-26
  • 录用日期:  2025-04-14
  • 网络出版日期:  2025-06-03

目录

    /

    返回文章
    返回