Optimized design of high-voltage generator for 4 MV electrostatic high-voltage ion accelerator
-
摘要: 中国科学院近代物理研究所近期开展了一台静电高压型离子加速器的研制工作。高压发生器作为该类型加速器的核心部件,要求达到最高工作电压4.2 MV、电压不稳定度小于±0.1%、纹波系数小于±0.1%的性能指标。针对设计指标,首先通过模拟仿真对高压发生器整体结构进行了设计与优化,从而支撑提升设备运行的安全性和稳定性。针对高压发生器中的重要组成部分,高频变压器部分,采用场路耦合的方法对其电路结构和电气参数进行了分析与优化,并改进了变压器的散热结构,从而确保高频变压器的输出稳定。最后介绍了高压发生器的高精度稳压设计方案,为提升高压发生器控制性能,进一步保证设备安全稳定运行提供了思路。研究结果表明,高压发生器设计能够满足项目技术指标的要求。Abstract: The Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS) has recently initiated the development of an electrostatic high-voltage ion accelerator. As the core component of this accelerator type, the high-voltage generator is required to meet design specifications including a maximum operational voltage of 4.2 MV, voltage instability below ±0.1%, and ripple coefficient under ±0.1%. To achieve these parameters, simulation-based modeling was first implemented for the overall structural design and optimization of the high-voltage generator, thereby enhancing operational safety and stability.For the critical high-frequency transformer subsystem within the generator, a field-circuit coupling methodology was employed to analyze and optimize both its circuit topology and electrical parameters. Concurrently, thermal dissipation structure modifications were implemented to ensure stable output performance of the transformer. Furthermore, a high-precision voltage stabilization scheme was developed for the generator's control system, proposing optimized control strategies to enhance operational reliability.The research demonstrates that the proposed high-voltage generator design meets the specified technical requirements of the project. This systematic approach integrating electromagnetic design, thermal management optimization, and advanced control methodologies provides valuable insights for developing next-generation high-voltage power systems in accelerator applications.
-
表 1 高压发生器系统电性能指标参数
Table 1. Electrical performance specifications of the high-voltage generator system
output voltage/MV maximum load current/μA output voltage range/MV voltage instability/% ripple factor/% design specification 4.2 1 000 0.2~4.0 <±0.1 <±0.1 acceptance criteria 4.0 ≮100 0.2~4.0 <±0.1 <±0.1 -
[1] 徐川, 付恩刚, 高原, 等. 北京大学静电加速器及其应用[J]. 科学通报, 2023, 68(9):1096-1103 doi: 10.1360/TB-2022-1132Xu Chuan, Fu Engang, Gao Yuan, et al. Electrostatic accelerator facilities and their applications at Peking University[J]. Chinese Science Bulletin, 2023, 68(9): 1096-1103 doi: 10.1360/TB-2022-1132 [2] 徐川, 付恩刚. 北京大学1.7MV串列静电加速器的离子注入/辐照实验系统[J]. 原子核物理评论, 2021, 38(4):410-415 doi: 10.11804/NuclPhysRev.38.2021058Xu Chuan, Fu Engang. Ion implantation/irradiation system of 1.7MV tandem accelerator at Peking University[J]. Nuclear Physics Review, 2021, 38(4): 410-415 doi: 10.11804/NuclPhysRev.38.2021058 [3] 芦卓凡. 4MV静电离子加速稳压控制系统设计[D]. 郑州: 郑州大学, 2014Lu Zhuofan. The design for 4MeV ionelectrostatic accelerator stablizing voltage system[D]. Zhengzhou: Zhengzhou University, 2014 [4] Matsuyama S, Miwa M, Toyama S, et al. Improvement of high voltage stability of the dynamitron accelerator for microbeam application using slit feedback system[R]. CYRIC Annual Report, 2019. [5] Sen A, Domínguez-Cañizares G, Podaru N C, et al. A high intensity, high stability 3.5 MV Singletron™ accelerator[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 450: 390-395. doi: 10.1016/j.nimb.2018.09.016 [6] 徐建铭. 加速器原理(修订版)[M]. 北京: 科学出版社, 1974: 14-15Xu Jianming. Principles of accelerators (revised edition)[M]. Beijing: Science Press, 1974: 14-15 [7] Honda S, Yoshihashi S, Tomita S, et al. Development of a Sealed Li target as an accelerator-driven neutron source for Boron neutron capture therapy at Nagoya University[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1040: 167140. doi: 10.1016/j.nima.2022.167140 [8] Han Jifeng, An Zhu, Zheng Gaoqun, et al. An ion beam facility based on a 3 MV tandetron accelerator in Sichuan University, China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2018, 418: 68-73. [9] Uritani A, Menjo Y, Watanabe K, et al. Design of beam shaping assembly for an accelerator-driven BNCT system in Nagoya University[C]//Proceedings of the International Conference on Neutron Optics. 2018. [10] Miwa M, Matsuyama S, Toyama S. Development of a high-voltage stabilization system for precision ion beams[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2023, 543: 165101. doi: 10.1016/j.nimb.2023.165101 [11] 翟兴林. 国外工业辐照加速器的应用及其进展[J]. 核技术, 1987(11):1-5Zhai Xinglin. Status and applications of foreign accelerators for radiation processing[J]. Nuclear Techniques, 1987(11): 1-5 [12] 李民熙, 沙振元, 赖伟全, 等. 3MV20mA高频高压电子加速器研制进展[J]. 核物理动态, 1994, 11(4):57-58,8Li Minxi, Sha Zhenyuan, Lai Weiquan, et al. Progress of 3 MV 20 mA Dynamitron project[J]. Nuclear Physics Review, 1994, 11(4): 57-58,8 [13] GB/T 25306-2010, 辐射加工用电子加速器工程通用规范[S]GB/T 25306-2010, Standard of electron accelerator facility engineering for radiation processing[S] [14] 赵峰, 高巍, 郭艳君. SF6气体在电力变压器中的应用[J]. 变压器, 2020, 57(4):33-38Zhao Feng, Gao Wei, Guo Yanjun. Application of SF6 gas in power transformer[J]. Transformer, 2020, 57(4): 33-38 [15] 陈佳洱. 加速器物理基础[M]. 北京: 北京大学出版社, 2012: 59-61Chen Jia'er. Fundamentals of accelerator physics[M]. Beijing: Peking University Press, 2012: 59-61 [16] Thompson C C, Cleland M R. Design equations for dynamitron type power supplies in the megavolt range[J]. IEEE Transactions on Nuclear Science, 1969, 16(3): 124-129. doi: 10.1109/TNS.1969.4325195 [17] Cleland M R, Farrell P. Dynamitrons of the Future[J]. IEEE Transactions on Nuclear Science, 1965, 12(3): 227-234. doi: 10.1109/TNS.1965.4323626 [18] Thompson C C. Multi-loop feedback system for Dynamitron voltage regulation[J]. IEEE Transactions on Nuclear Science, 1967, 14(3): 169-173. doi: 10.1109/TNS.1967.4324546 [19] 刘云鹏, 律方成, 李成榕, 等. 基于多导体传输线模型的单相变压器绕组中放电的距离函数法定位[J]. 电工技术学报, 2006, 21(1):115-120 doi: 10.3321/j.issn:1000-6753.2006.01.022Liu Yunpeng, Lü Fangcheng, Li Chengrong, et al. Distance function locating partial discharge in single phase transformer winding based on MTL model[J]. Transactions of China Electrotechnical Society, 2006, 21(1): 115-120 doi: 10.3321/j.issn:1000-6753.2006.01.022 [20] 宋振飞, 王虎, 汤必强. 发动机气缸套温度场分析系统的开发[J]. 合肥工业大学学报(自然科学版), 2022, 45(6):726-729Song Zhenfei, Wang Hu, Tang Biqiang. Development of temperature field analysis system for engine cylinder liner[J]. Journal of Hefei University of Technology (Natural Science), 2022, 45(6): 726-729 [21] 孙振武. 4MV离子静电加速器的研制[D]. 郑州: 郑州大学, 2006Sun Zhenwu. Development of a 4MV ion electrostatic accelerator[D]. Zhengzhou: Zhengzhou University, 2006 -