留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同一电流驱动不同厚度“飞片对”实验的数值模拟

阚明先 张朝辉 段书超

阚明先, 张朝辉, 段书超. 同一电流驱动不同厚度“飞片对”实验的数值模拟[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250017
引用本文: 阚明先, 张朝辉, 段书超. 同一电流驱动不同厚度“飞片对”实验的数值模拟[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250017
Kan Mingxian, Zhang Zhaohui, Duan Shuchao. Numerical simulation of flyer plate couples with different thickness driven by a same current[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250017
Citation: Kan Mingxian, Zhang Zhaohui, Duan Shuchao. Numerical simulation of flyer plate couples with different thickness driven by a same current[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250017

同一电流驱动不同厚度“飞片对”实验的数值模拟

doi: 10.11884/HPLPB202537.250017
基金项目: 国家自然科学基金项目(12472397)
详细信息
    作者简介:

    阚明先,kanmx@caep.cn

  • 中图分类号: O361.3

Numerical simulation of flyer plate couples with different thickness driven by a same current

  • 摘要: 一般来说,同一大小的力推动不同质量的物体,质量轻的物体获得的速度总是更大。然而,在磁驱动对称飞片发射实验中,同一电流驱动0.37 mm和0.48 mm两个“飞片对”,0.37 mm“飞片对”获得的最终速度为18 km/s,0.48 mm“飞片对”获得的最终速度为19 km/s,即厚“飞片对”获得的测量速度反而更大。采用边界磁场受烧蚀影响的磁流体力学程序解释这一反常现象。数值模拟表明,边界磁场受烧蚀影响的磁流体力学程序能正确模拟0.37 mm和0.48 mm两个“飞片对”的动力学过程。厚“飞片对”测得的最终速度比薄“飞片对”测得的最终速度更大,其物理机理是厚“飞片对”烧蚀熔化到整个“飞片对”密度低于固体密度的完全熔化时间,比薄“飞片对”烧蚀熔化到整个“飞片对”密度低于固体密度的完全熔化时间更长。
  • 图  1  磁驱动对称飞片实验结构示意图

    Figure  1.  Cross section of magnetically driven symmetrical flyer experiment

    图  2  实验测量电流

    Figure  2.  Measured current

    图  3  模拟的0.37 mm飞片自由面温度、密度

    Figure  3.  Temperature and density of 0.37 mm flyer plate’s free surface

    图  6  453 ns时0.48 mm飞片的密度分布

    Figure  6.  Density of 0.48 mm flyer plate at 453 ns

    图  4  模拟的0.48 mm飞片自由面温度、密度

    Figure  4.  Temperature and density of 0.48 mm flyer plate’s surface

    图  5  415 ns时0.37 mm飞片的密度分布

    Figure  5.  Density of 0.37 mm flyer plate at 415 ns

    图  7  0.37 mm飞片固体密度反射面速度

    Figure  7.  Solid density reflecting surface velocity of 0.37 mm flyer plate

    图  8  0.48 mm飞片固体密度反射面速度

    Figure  8.  Solid density reflecting surface velocity of 0.48 mm flyer plate

    图  9  不同厚度“飞片对”电流加载端的磁压力

    Figure  9.  Pressure of different flyer plate couples

    图  10  不同厚度“飞片对”测量速度历史

    Figure  10.  Measured velocities of different flyer plate couples

  • [1] Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38(6): 480-485. doi: 10.1016/j.ijimpeng.2010.10.019
    [2] Lemke R W, Knudson M D, Bliss D E, et al. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments[J]. Journal of Applied Physics, 2005, 98: 073530. doi: 10.1063/1.2084316
    [3] Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 Gpa using a magnetically accelerated flyer plate technique[J]. Journal of Applied Physics, 2003, 94(7): 4420-4431. doi: 10.1063/1.1604967
    [4] Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Physical Review Letters, 2001, 87: 225501. doi: 10.1103/PhysRevLett.87.225501
    [5] Knudson M D, Hanson D L, Bailey J E, et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 Gpa[J]. Physical Review Letters, 2003, 90: 035505. doi: 10.1103/PhysRevLett.90.035505
    [6] Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Physical Review B, 2004, 69: 144209. doi: 10.1103/PhysRevB.69.144209
    [7] Vogler T J, Ao T, Asay J R. High-pressure strength of aluminum under quasi-isentropic loading[J]. International Journal of Plasticity, 2009, 25(4): 671-694. doi: 10.1016/j.ijplas.2008.12.003
    [8] Davis J P, Brown J L, Knudson M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: application to tantalum[J]. Journal of Applied Physics, 2014, 116: 204903. doi: 10.1063/1.4902863
    [9] 王贵林, 张朝辉, 郭帅, 等. 聚龙一号装置上铜的准等熵压缩线测量实验研究[J]. 强激光与粒子束, 2016, 28: 055010 doi: 10.11884/HPLPB201628.055010

    Wang Guilin, Zhang Zhaohui, Guo Shuai, et al. Experimental measurement of quasi-isentrope for copper on PTS[J]. High Power Laser and Particle Beams, 2016, 28: 055010 doi: 10.11884/HPLPB201628.055010
    [10] 郭帅, 王贵林, 张朝辉, 等. 聚龙一号装置准等熵压缩实验负载优化研究[J]. 强激光与粒子束, 2016, 28: 015015 doi: 10.11884/HPLPB201628.015015

    Guo Shuai, Wang Guilin, Zhang Zhaohui, et al. Optimization of load configurations for isentropic compression experiments on PTS[J]. High Power Laser and Particle Beams, 2016, 28: 015015 doi: 10.11884/HPLPB201628.015015
    [11] Reisman D B, Toor A, Cauble R C, et al. Magnetically driven isentropic compression experiments on the Z accelerator[J]. Journal of Applied Physics, 2001, 89(3): 1625-1633. doi: 10.1063/1.1337082
    [12] Lemke R W, Knudson M D, Hall C A, et al. Characterization of magnetically accelerated flyer plates[J]. Physics of Plasmas, 2003, 10(4): 1092-1099. doi: 10.1063/1.1554740
    [13] Kan Mingxian, Zhang Zhaohui, Xiao Bo, et al. Simulation of magnetically driven flyer plate experiments with an improved magnetic field boundary formula[J]. High Energy Density Physics, 2018, 26: 38-43. doi: 10.1016/j.hedp.2017.12.002
    [14] 阚明先, 蒋吉昊, 王刚华, 等. 衬套内爆ALE方法二维MHD数值模拟[J]. 四川大学学报(自然科学版), 2007, 44(1): 91-96

    Kan Mingxian, Jiang Jihao, Wang Ganghua, et al. ALE simulation 2D MHD for liner[J]. Journal of Sichuan University(Natural Science Edition), 2007, 44(1): 91-96
    [15] 阚明先, 王刚华, 赵海龙, 等. 磁驱动飞片二维磁流体力学数值模拟[J]. 强激光与粒子束, 2013, 25(8): 2137-2141 doi: 10.3788/HPLPB20132508.2137

    Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Two-dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates[J]. High Power Laser and Particle Beams, 2013, 25(8): 2137-2141 doi: 10.3788/HPLPB20132508.2137
    [16] 阚明先, 段书超, 王刚华, 等. 磁驱动飞片发射实验结构系数初步研究[J]. 强激光与粒子束, 2020, 32: 085002 doi: 10.11884/HPLPB202032.200072

    Kan Mingxian, Duan Shuchao, Wang Ganghua, et al. Structure coefficient in magnetically driven flyer plate experiment[J]. High Power Laser and Particle Beams, 2020, 32: 085002 doi: 10.11884/HPLPB202032.200072
    [17] 阚明先, 王刚华, 段书超, 等. 二维磁驱动数值模拟程序(V1.0), 2023, 登记号: 2023SR0715446

    Kan Mingxian, Wang Ganghua, Duan Shuchao, et al. Two-dimensional magnetically driven simulation code(V1.0), 2023, registration number: 2023SR0715446
    [18] 阚明先, 贾月松, 张南川, 等. 回流罩结构Z-箍缩实验的数值模拟[J]. 强激光与粒子束, 2023, 35: 025003 doi: 10.11884/HPLPB202335.220271

    Kan Mingxian, Jia Yuesong, Zhang Nanchuan, et al. Simulation of Z-pinch experiments with a reflux hood structure[J]. High Power Laser and Particle Beams, 2023, 35: 025003 doi: 10.11884/HPLPB202335.220271
    [19] 阚明先, 陈涵, 吴凤超, 等. 磁驱动固体套筒实验模拟中的电流系数[J]. 高压物理学报, 2025, 39: 012301 doi: 10.11858/gywlxb.20240844

    Kan Mingxian, Chen Han, Wu Fengchao, et al. Current coefficient law in simulation of magnetically driven solid liner experiment[J]. Chinese Journal of High Pressure Physics, 2025, 39: 012301 doi: 10.11858/gywlxb.20240844
    [20] 阚明先, 王刚华, 肖波, 等. 磁驱动单侧飞片实验的数值模拟[J]. 爆炸与冲击, 2020, 40: 033304 doi: 10.11883/bzycj-2019-0103

    Kan Mingxian, Wang Ganghua, Xiao Bo, et al. Simulation on magnetically-driven one-sided flyer plate experiments[J]. Explosion and Shock Waves, 2020, 40: 033304 doi: 10.11883/bzycj-2019-0103
    [21] 阚明先, 段书超, 王刚华, 等. 自由面被烧蚀磁驱动飞片的数值模拟[J]. 强激光与粒子束, 2017, 29: 045003 doi: 10.11884/HPLPB201729.160482

    Kan Mingxian, Duan Shuchao, Wang Ganghua, et al. Numerical simulation of magnetically driven flyer plate of ablated free surface[J]. High Power Laser and Particle Beams, 2017, 29: 045003 doi: 10.11884/HPLPB201729.160482
    [22] 阚明先, 王刚华, 刘利新, 等. 带窗口磁驱动准等熵压缩实验模拟[J]. 强激光与粒子束, 2021, 33: 055001 doi: 10.11884/HPLPB202133.200329

    Kan Mingxian, Wang Ganghua, Liu Lixin, et al. Simulation of magnetically driven quasi-isentropic compression experiments with windows[J]. High Power Laser and Particle Beams, 2021, 33: 055001 doi: 10.11884/HPLPB202133.200329
    [23] 阚明先, 刘利新, 南小龙, 等. 磁驱动样品实验数值模拟研究[J]. 高压物理学报, 2023, 37: 062301 doi: 10.11858/gywlxb.20230683

    Kan Mingxian, Liu Lixin, Nan Xiaolong, et al. Numerical simulation of magnetically driven sample experiment[J]. Chinese Journal of High Pressure Physics, 2023, 37: 062301 doi: 10.11858/gywlxb.20230683
  • 加载中
图(10)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  61
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-17
  • 修回日期:  2025-07-15
  • 录用日期:  2025-07-20
  • 网络出版日期:  2025-07-22

目录

    /

    返回文章
    返回