[1] |
Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38(6): 480-485. doi: 10.1016/j.ijimpeng.2010.10.019
|
[2] |
Lemke R W, Knudson M D, Bliss D E, et al. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments[J]. Journal of Applied Physics, 2005, 98: 073530. doi: 10.1063/1.2084316
|
[3] |
Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 Gpa using a magnetically accelerated flyer plate technique[J]. Journal of Applied Physics, 2003, 94(7): 4420-4431. doi: 10.1063/1.1604967
|
[4] |
Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Physical Review Letters, 2001, 87: 225501. doi: 10.1103/PhysRevLett.87.225501
|
[5] |
Knudson M D, Hanson D L, Bailey J E, et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 Gpa[J]. Physical Review Letters, 2003, 90: 035505. doi: 10.1103/PhysRevLett.90.035505
|
[6] |
Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Physical Review B, 2004, 69: 144209. doi: 10.1103/PhysRevB.69.144209
|
[7] |
Vogler T J, Ao T, Asay J R. High-pressure strength of aluminum under quasi-isentropic loading[J]. International Journal of Plasticity, 2009, 25(4): 671-694. doi: 10.1016/j.ijplas.2008.12.003
|
[8] |
Davis J P, Brown J L, Knudson M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: application to tantalum[J]. Journal of Applied Physics, 2014, 116: 204903. doi: 10.1063/1.4902863
|
[9] |
王贵林, 张朝辉, 郭帅, 等. 聚龙一号装置上铜的准等熵压缩线测量实验研究[J]. 强激光与粒子束, 2016, 28: 055010 doi: 10.11884/HPLPB201628.055010Wang Guilin, Zhang Zhaohui, Guo Shuai, et al. Experimental measurement of quasi-isentrope for copper on PTS[J]. High Power Laser and Particle Beams, 2016, 28: 055010 doi: 10.11884/HPLPB201628.055010
|
[10] |
郭帅, 王贵林, 张朝辉, 等. 聚龙一号装置准等熵压缩实验负载优化研究[J]. 强激光与粒子束, 2016, 28: 015015 doi: 10.11884/HPLPB201628.015015Guo Shuai, Wang Guilin, Zhang Zhaohui, et al. Optimization of load configurations for isentropic compression experiments on PTS[J]. High Power Laser and Particle Beams, 2016, 28: 015015 doi: 10.11884/HPLPB201628.015015
|
[11] |
Reisman D B, Toor A, Cauble R C, et al. Magnetically driven isentropic compression experiments on the Z accelerator[J]. Journal of Applied Physics, 2001, 89(3): 1625-1633. doi: 10.1063/1.1337082
|
[12] |
Lemke R W, Knudson M D, Hall C A, et al. Characterization of magnetically accelerated flyer plates[J]. Physics of Plasmas, 2003, 10(4): 1092-1099. doi: 10.1063/1.1554740
|
[13] |
Kan Mingxian, Zhang Zhaohui, Xiao Bo, et al. Simulation of magnetically driven flyer plate experiments with an improved magnetic field boundary formula[J]. High Energy Density Physics, 2018, 26: 38-43. doi: 10.1016/j.hedp.2017.12.002
|
[14] |
阚明先, 蒋吉昊, 王刚华, 等. 衬套内爆ALE方法二维MHD数值模拟[J]. 四川大学学报(自然科学版), 2007, 44(1): 91-96Kan Mingxian, Jiang Jihao, Wang Ganghua, et al. ALE simulation 2D MHD for liner[J]. Journal of Sichuan University(Natural Science Edition), 2007, 44(1): 91-96
|
[15] |
阚明先, 王刚华, 赵海龙, 等. 磁驱动飞片二维磁流体力学数值模拟[J]. 强激光与粒子束, 2013, 25(8): 2137-2141 doi: 10.3788/HPLPB20132508.2137Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Two-dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates[J]. High Power Laser and Particle Beams, 2013, 25(8): 2137-2141 doi: 10.3788/HPLPB20132508.2137
|
[16] |
阚明先, 段书超, 王刚华, 等. 磁驱动飞片发射实验结构系数初步研究[J]. 强激光与粒子束, 2020, 32: 085002 doi: 10.11884/HPLPB202032.200072Kan Mingxian, Duan Shuchao, Wang Ganghua, et al. Structure coefficient in magnetically driven flyer plate experiment[J]. High Power Laser and Particle Beams, 2020, 32: 085002 doi: 10.11884/HPLPB202032.200072
|
[17] |
阚明先, 王刚华, 段书超, 等. 二维磁驱动数值模拟程序(V1.0), 2023, 登记号: 2023SR0715446Kan Mingxian, Wang Ganghua, Duan Shuchao, et al. Two-dimensional magnetically driven simulation code(V1.0), 2023, registration number: 2023SR0715446
|
[18] |
阚明先, 贾月松, 张南川, 等. 回流罩结构Z-箍缩实验的数值模拟[J]. 强激光与粒子束, 2023, 35: 025003 doi: 10.11884/HPLPB202335.220271Kan Mingxian, Jia Yuesong, Zhang Nanchuan, et al. Simulation of Z-pinch experiments with a reflux hood structure[J]. High Power Laser and Particle Beams, 2023, 35: 025003 doi: 10.11884/HPLPB202335.220271
|
[19] |
阚明先, 陈涵, 吴凤超, 等. 磁驱动固体套筒实验模拟中的电流系数[J]. 高压物理学报, 2025, 39: 012301 doi: 10.11858/gywlxb.20240844Kan Mingxian, Chen Han, Wu Fengchao, et al. Current coefficient law in simulation of magnetically driven solid liner experiment[J]. Chinese Journal of High Pressure Physics, 2025, 39: 012301 doi: 10.11858/gywlxb.20240844
|
[20] |
阚明先, 王刚华, 肖波, 等. 磁驱动单侧飞片实验的数值模拟[J]. 爆炸与冲击, 2020, 40: 033304 doi: 10.11883/bzycj-2019-0103Kan Mingxian, Wang Ganghua, Xiao Bo, et al. Simulation on magnetically-driven one-sided flyer plate experiments[J]. Explosion and Shock Waves, 2020, 40: 033304 doi: 10.11883/bzycj-2019-0103
|
[21] |
阚明先, 段书超, 王刚华, 等. 自由面被烧蚀磁驱动飞片的数值模拟[J]. 强激光与粒子束, 2017, 29: 045003 doi: 10.11884/HPLPB201729.160482Kan Mingxian, Duan Shuchao, Wang Ganghua, et al. Numerical simulation of magnetically driven flyer plate of ablated free surface[J]. High Power Laser and Particle Beams, 2017, 29: 045003 doi: 10.11884/HPLPB201729.160482
|
[22] |
阚明先, 王刚华, 刘利新, 等. 带窗口磁驱动准等熵压缩实验模拟[J]. 强激光与粒子束, 2021, 33: 055001 doi: 10.11884/HPLPB202133.200329Kan Mingxian, Wang Ganghua, Liu Lixin, et al. Simulation of magnetically driven quasi-isentropic compression experiments with windows[J]. High Power Laser and Particle Beams, 2021, 33: 055001 doi: 10.11884/HPLPB202133.200329
|
[23] |
阚明先, 刘利新, 南小龙, 等. 磁驱动样品实验数值模拟研究[J]. 高压物理学报, 2023, 37: 062301 doi: 10.11858/gywlxb.20230683Kan Mingxian, Liu Lixin, Nan Xiaolong, et al. Numerical simulation of magnetically driven sample experiment[J]. Chinese Journal of High Pressure Physics, 2023, 37: 062301 doi: 10.11858/gywlxb.20230683
|