留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的大规模光纤激光相干合成相位控制的异常检测

李国豪 顾静良 唐乾轲 李正东 颜宏 王锋

李国豪, 顾静良, 唐乾轲, 等. 基于深度学习的大规模光纤激光相干合成相位控制的异常检测[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250019
引用本文: 李国豪, 顾静良, 唐乾轲, 等. 基于深度学习的大规模光纤激光相干合成相位控制的异常检测[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250019
Li Guohao, Gu Jingliang, Tang Qianke, et al. Anomaly detection for phase control of large-scale fiber laser coherent combination based on deep learning[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250019
Citation: Li Guohao, Gu Jingliang, Tang Qianke, et al. Anomaly detection for phase control of large-scale fiber laser coherent combination based on deep learning[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250019

基于深度学习的大规模光纤激光相干合成相位控制的异常检测

doi: 10.11884/HPLPB202537.250019
详细信息
    作者简介:

    李国豪,liguohao22@gscaep.ac.cn

    通讯作者:

    颜 宏,yanhong@caep.cn

    王 锋,yuan13381338@163.com

  • 中图分类号: TP391.4

Anomaly detection for phase control of large-scale fiber laser coherent combination based on deep learning

  • 摘要: 光纤激光相干合成技术通过精确控制各路光纤激光的相位,实现高功率的激光输出。然而,系统运行中存在多种影响因素,如相位控制精度、光强稳定性、通信链路可靠性以及环境干扰等,这些因素可能导致系统性能下降。针对大规模光纤激光相干合成相位控制中的异常检测问题,提出一种基于深度学习的多探测器串行共孔径相干合成检测新方法。首先,采集十路光纤激光相干合成数据,分析系统控制过程及其合束原理,归类系统中可能出现的异常情况,并仿真得到数据集。其次,设计一种结合轻量化高效多头注意力机制(EMA)的EMA-Transformer网络模型。在对比实验中,本算法相较于ResNet50,在验证集上的精度提升了约50%,在测试集上的精度提升了约2.20%。在算法的实际应用中,搭建八束光纤激光相干合成实验装置,使用TensorRT部署算法进行测试。实验结果表明,本算法推理耗时达2.153 ms,达到了相位控制异常检测的实时性要求。
  • 图  1  大规模光纤激光共孔径相干合成系统光路

    Figure  1.  Large-scale fiber laser common-aperture coherent combining system optical path

    图  2  开环和闭环效果正常情况的电压平均值、电压最大值以及电压均方根值

    Figure  2.  Average, maximum, and RMS values for open and closed loop cases

    图  3  Transformer 的总体架构

    Figure  3.  General architecture of Transformer

    图  4  EMA 的总体架构

    Figure  4.  General architecture of EMA

    图  5  Transformer+EMA 的总体架构

    Figure  5.  General architecture of Transformer+EMA

    图  6  Transformer模型的训练损失曲线和精度曲线

    Figure  6.  Training loss curves and accuracy curves for transformer models

    图  7  Transformer+EMA模型的训练损失曲线和精度误差曲线

    Figure  7.  Training Loss Curves and Accuracy Curves for Transformer+EMA Models

    图  8  Xception和ResNet50的网络结构图

    Figure  8.  The network structure diagrams of Xception and ResNet50

    图  9  光纤激光相干合成系统信号处理和控制流程

    Figure  9.  Signal processing and control flow of fibre laser coherent synthesis system

    表  1  各个模型的性能指标统计

    Table  1.   Performance metrics statistics for each model

    model validation error test error train time/s
    Xception 0.0185 0.0176 400
    Xception+EMA 0.0150 0.0135 432
    ResNet50 0.0107 0.0091 621
    ResNet50+EMA 0.0076 0.0079 701
    Transformer 0.0103 0.0122 624
    Transformer+EMA 0.0061 0.0089 668
    下载: 导出CSV

    表  2  各个方法的性能指标统计

    Table  2.   Performance metrics statistics for each method

    accuracy /% inference time/ms
    Pytorch 98.52 4.314
    ONNX 98.64 4.145
    TensorRT fp16 97.53 2.153
    下载: 导出CSV
  • [1] McNaught S J, Komine H, Weiss S B, et al. 100 kW coherently combined slab MOPAs[C]//Proceedings of the 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference. 2009: 1-2.
    [2] Uberna R, Bratcher A, Tiemann B G. Power scaling of a fiber master oscillator power amplifier system using a coherent polarization beam combination[J]. Applied Optics, 2010, 49(35): 6762-6765. doi: 10.1364/AO.49.006762
    [3] 刘泽金, 周朴, 马鹏飞, 等. 4路高功率窄线宽、线偏振光纤放大器相干偏振合成实现5kW级高亮度激光输出[J]. 中国激光, 2017, 44: 0415004 doi: 10.3788/CJL201744.0415004

    Liu Zejin, Zhou Pu, Ma Pengfei, et al. Coherent polarization synthesis of four high-power narrow-linewidth, linearly polarized fiber amplifiers to achieve 5 kW high-brightness laser output[J]. Chinese Journal of Lasers, 2017, 44: 0415004 doi: 10.3788/CJL201744.0415004
    [4] 张嘉怡, 任博, 李灿, 等. 八路超快光纤激光高效相干偏振合成[J]. 中国激光, 2024, 51: 1516001 doi: 10.3788/CJL240842

    Zhang Jiayi, Ren Bo, Li Can, et al. Eight-channel ultrafast fiber lasers achieve efficient coherent polarization beam combination[J]. Chinese Journal of Lasers, 2024, 51: 1516001 doi: 10.3788/CJL240842
    [5] 周宏冰, 张昊宇, 李敏, 等. 大规模激光相干合成主动相位控制技术研究进展[J]. 强激光与粒子束, 2024, 36: 061001

    Zhou Hongbing, Zhang Haoyu, Li Min, et al. Progress in active phase control for large-scale coherent laser beam combining[J]. High Power Laser and Particle Beams, 2024, 36: 061001
    [6] 常琦, 高志强, 邓宇, 等. 强噪声下光纤激光相干合成突破千路[J]. 中国激光, 2023, 50: 0616001 doi: 10.3788/CJL221540

    Chang Qi, Gao Zhiqiang, Deng Yu, et al. Fiber laser coherent beam combination breaks through 1000 channels under strong noise[J]. Chinese Journal of Lasers, 2023, 50: 0616001 doi: 10.3788/CJL221540
    [7] Goodno G D, Shih C C, Rothenberg J E. Perturbative analysis of coherent combining efficiency with mismatched lasers[J]. Optics Express, 2010, 18(24): 25403-25414. doi: 10.1364/OE.18.025403
    [8] 颜宏, 叶一东, 卢飞, 等. 基于偏振鉴相的相干合成技术[J]. 强激光与粒子束, 2013, 25(s1): 5-8

    Yan Hong, Ye Yidong, Lu Fei, et al. Coherent beam combining based on polarization phase discrimination[J]. High Power Laser and Particle Beams, 2013, 25(s1): 5-8
    [9] 李彬, 叶一东, 颜宏, 等. 激光场相干叠加光束合成技术[J]. 强激光与粒子束, 2014, 26: 101023 doi: 10.3788/HPLPB20142610.101023

    Li Bin, Ye Yidong, Yan Hong, et al. Technology of filled-aperture coherent beam combining[J]. High Power Laser and Particle Beams, 2014, 26: 101023 doi: 10.3788/HPLPB20142610.101023
    [10] 刘家盈, 李自强, 杨然, 等. 光纤激光相控阵相干合成技术研究进展[J]. 强激光与粒子束, 2023, 35: 041003

    Liu Jiaying, Li Ziqiang, Yang Ran, et al. Research progress of coherent beam combining technique of phased fiber laser array[J]. High Power Laser and Particle Beams, 2023, 35: 041003
    [11] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 6000-6010.
    [12] Al-Hardanee O F, Demirel H. Hydropower station status prediction using RNN and LSTM algorithms for fault detection[J]. Energies, 2024, 17: 5599. doi: 10.3390/en17225599
    [13] Chen Haipeng, Yan Jie, Fu Wenxing. Two-layer fault diagnosis model of aircraft based on LSTM[J]. Aerospace Science and Technology, 2025, 158: 109756. doi: 10.1016/j.ast.2024.109756
    [14] Ouyang Daliang, He Su, Zhan Guozhong, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2023: 1-5.
    [15] Chollet F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017: 1800-1807.
    [16] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016: 770-778.
    [17] Yang Xu, Qu Shuo’ou, Wang Zhilin, et al. The study on ultrasound image classification using a dual-branch model based on Resnet50 guided by U-net segmentation results[J]. BMC Medical Imaging, 2024, 24: 314. doi: 10.1186/s12880-024-01486-z
    [18] 张海瑞. 基于ONNX与PyTorch框架的神经网络格式转换研究[D]. 西安: 西安电子科技大学, 2023

    Zhang Hairui. Research on the conversion of neural network formats using ONNX and PyTorch frameworks[D]. Xi’an: Xidian University, 2023
    [19] Shafique M A, Munir A, Kong J. Deep learning performance characterization on GPUs for various quantization frameworks[J]. AI, 2023, 4(4): 926-948. doi: 10.3390/ai4040047
    [20] Zhang Shicheng, Zhang Laixian, Qin Mingyu, et al. TensorRT acceleration based on deep learning photoelectric target detection[C]//Proceedings of the International Conference on Intelligent and Human-Computer Interaction Technology (IHCIT 2022). 2022.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  12
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-21
  • 修回日期:  2025-07-05
  • 录用日期:  2025-06-25
  • 网络出版日期:  2025-09-24

目录

    /

    返回文章
    返回