Simulation analysis and optimization design of RF grid-controlled electron gun
-
摘要: 加速器的束流品质直接影响着其应用性能,电子枪的结构决定了加速器的初始束流状态。优化针对花瓣加速器所适用的射频栅控电子枪,减小其发射度可得到更高的CT成像分辨率。模拟分析基于CST的Particle Tracking求解器得到了归一化发射度
0.4918 mm·mrad、峰值流强35 mA的束流,并且讨论了电子枪结构改变对电子枪发射度以及TWISS参数的影响。结果表明,当聚焦极角度改变时对归一化发射度具有较大影响,且在67.5°、60°和45°中,60°度的归一化发射度最小为0.2617 mm·mrad。Abstract: The beam quality of the accelerator directly affects its application performance, and the structure of the electron gun determines the initial beam state of the accelerator. Optimizing the RF grid-controlled electron gun suitable for rhodotron and reducing its emittance can obtain higher CT imaging resolution. The Particle Tracking solver based on CST is simulated and analyzed to obtain a beam with a normalized rms emittance of0.4918 mm·mrad and a peak current of 35 mA. And discussed the influence of changes in electron gun structure on the emittance of and TWISS parameters.The results show that when the focus Angle changes, the normalized rms emittance is greatly affected. And in 67.5°, 60° and 45°, the minimum normalized rms emittance is0.2617 mm·mrad when the focus Angle is 60°.-
Key words:
- rhodotron /
- electron gun /
- grid-controlled /
- emittance
-
表 1 式(13)与CST模拟结果的部分验证
Table 1. Partial verification of Equation (13) and CST simulation results
radius/mm phase/(°) geometric RMS emmittance
(simulation)/(mm·mrad)geometric RMS emmittance
(fomula)/(mm·mrad)1.500 11.0 59.31 59.19 0.645 13.5 31.41 31.38 0.645 21.5 50.92 50.90 表 2 各相位粒子的结果
Table 2. Results of particles in each phase
phase/(°) grid
voltage/Vanode simulated
current/mAcathode simulated
current/mAtransmittance/% nomalized RMS
emmtiance/(mm·mrad)36 26.336 19.074 25.361 0.752 100 2.880 42 50.739 42.085 58.219 0.722 874 2.190 48 72.943 67.050 94.741 0.707 719 1.680 54 92.705 92.069 131.775 0.698 683 1.300 60 109.808 115.547 166.887 0.692 367 1.070 66 124.064 144.451 210.475 0.686 310 0.828 72 135.317 160.944 235.677 0.682 901 0.681 78 143.444 174.412 256.316 0.680 457 0.613 84 148.357 183.429 270.134 0.679 030 0.576 90 150.000 186.040 274.511 0.677 714 0.569 96 148.357 183.429 270.134 0.679 030 0.576 102 143.444 174.412 256.316 0.680 457 0.613 108 135.317 160.944 235.677 0.682 901 0.681 114 124.064 144.451 210.475 0.686 310 0.828 120 109.808 115.547 166.887 0.692 367 1.070 126 92.705 92.069 131.775 0.698 683 1.300 132 72.943 67.05 94.741 0.707 719 1.680 138 50.739 42.085 58.219 0.722 874 2.190 144 26.336 19.074 25.361 0.752 100 2.880 表 3 各相位粒子的结果
Table 3. Results of particles in each Phase
phase/(°) grid
voltage/Vanode theoretical
current/mAanode simulated
current/mAcathode simulated
current/mAtransmittance/% nomalized RMS
emmtiance/(mm·mrad)36 26.336 2.590 3.915 4.984 0.785 514 1.200 42 50.739 6.927 8.149 11.640 0.700 086 0.940 48 72.943 11.940 13.211 19.100 0.691 675 0.756 54 92.705 17.107 18.32 26.684 0.686 554 0.621 60 109.808 22.053 23.138 33.888 0.682 779 0.521 66 124.064 26.484 27.403 40.313 0.679 756 0.482 72 135.317 30.168 30.926 45.639 0.677 622 0.436 78 143.444 32.926 33.553 49.619 0.676 213 0.384 84 148.357 34.632 35.173 52.077 0.675 404 0.351 90 150.000 35.209 35.27 56.390 0.625 466 0.321 96 148.357 34.632 35.173 52.077 0.675 404 0.351 102 143.444 32.926 33.553 49.619 0.676 213 0.384 108 135.317 30.168 30.926 45.639 0.677 622 0.436 114 124.064 26.484 27.403 40.313 0.679 756 0.482 120 109.808 22.053 23.138 33.888 0.682 779 0.521 126 92.705 17.107 18.320 26.684 0.686 554 0.621 132 72.943 11.940 13.211 19.100 0.691 675 0.756 138 50.739 6.927 8.149 11.640 0.700 086 0.940 144 26.336 2.590 3.915 4.984 0.785 514 1.200 表 4 不同聚焦角度对阳极出口处归一化RMS发射度及TWISS参数的影响
Table 4. Effects of different focusing angles on the normalized RMS emittance and TWISS parameters at the anode outlet
${\varepsilon _{{\mathrm{n}},{\mathrm{RMS}}}} $/(mm·mrad) α β/m γ/m−1 67.5° 0.4918 − 0.9757 0.08205 23.8 60° 0.2617 − 0.4925 0.01403 88.5 45° 0.2732 − 0.1349 0.01302 78.2 -
[1] 范家晖. 高精确度栅控电子枪的仿真与设计[D]. 成都: 电子科技大学, 2021Fan Jiahui. Simulation and design of high precision grid control electron gun[D]. Chengdu: University of Electronic Science and Technology of China, 2021 [2] Zhang Liang, Adam G, Militsyn B, et al. Electron injector based on thermionic RF-modulated electron gun for particle accelerator applications[J]. IEEE Transactions on Electron Devices, 2020, 67(1): 347-353. doi: 10.1109/TED.2019.2954778 [3] Sprangle P, Peñano J, Hafizi B, et al. High average current electron guns for high-power free electron lasers[J]. Physical Review Special Topics - Accelerators and Beams, 2011, 14: 020702. doi: 10.1103/PhysRevSTAB.14.020702 [4] Huang Zhirong, Kim K J. Review of x-ray free-electron laser theory[J]. Physical Review Special Topics - Accelerators and Beams, 2007, 10: 034801. doi: 10.1103/PhysRevSTAB.10.034801 [5] St Aubin J, Steciw S, Kirkby C, et al. An integrated 6 MV linear accelerator model from electron gun to dose in a water tank[J]. Medical Physics, 2010, 37(5): 2279-2288. doi: 10.1118/1.3397455 [6] He Xiaozhong, Yang Liu, Liao Shuqing, et al. Rhodotron and rotating target: a solution towards micro-spot for high energy and high dose rate bremsstrahlung sources[J]. Applied Radiation and Isotopes, 2022, 189: 110446. doi: 10.1016/j.apradiso.2022.110446 [7] 廖树清, 何小中, 杨柳, 等. 大功率花瓣加速器X射线闪光放射治疗设备设计研究[J]. 中国医学装备, 2024, 21(1):21-23,28Liao Shuqing, He Xiaozhong, Yang Liu, et al. Study on the design of X-ray flash-RT equipment with high power petal accelerator[J]. China Medical Equipment, 2024, 21(1): 21-23,28 [8] Peng Xiaoyu, Hu Tongning, Peng Yufei, et al. Optimized design of a thermionic electron gun applied to a high-power FEL injector[C]//Proceedings of 2023 IEEE 4th China International Youth Conference On Electrical Engineering (CIYCEE). 2023: 1-6. [9] Bakker R J, van der Geer C A J, van der Meer A F G, et al. 1 GHz modulation of a high-current electron gun[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1991, 307(2/3): 543-552. [10] Gough C, Ivkovic S, Le Pimpec F, et al. High gradient electrodes for a diode-RF electron gun[C]//Proceedings of the 1st International Particle Accelerator Conference. 2010. [11] 和天慧, 罗星, 劳成龙, 等. 基于IOT放大器的微波功率源在超导直线加速器上的应用[J]. 原子能科学技术, 2019, 53(9):1629-1633He Tianhui, Luo Xing, Lao Chenglong, et al. Application of microwave power source based on IOT amplifier in superconducting linear accelerator[J]. Atomic Energy Science and Technology, 2019, 53(9): 1629-1633 [12] Zong Yang, Cao Shuchun, Zhao Quantang, et al. Experimental proof test of CW mode RF modulated grid-controlled thermionic electron gun[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1021: 165958. doi: 10.1016/j.nima.2021.165958 [13] Kim K J. Rf and space-charge effects in laser-driven rf electron guns[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 275(2): 201-218. doi: 10.1016/0168-9002(89)90688-8 [14] 谢应猛, 张善才, 汤振兴. 一种微波栅控直流电子枪初步物理设计[J]. 核技术, 2015, 38:060104Xie Yingmeng, Zhang Shancai, Tang Zhengxing, et al. Preliminary physical design of a RF-gated gridded thermionic gun[J]. Nuclear Techniques, 2015, 38: 060104 [15] 刘波. BEPCⅡ电子枪系统的研究[D]. 北京: 中国科学院高能物理研究所, 2005: 12-17Liu Bo. Study of BECPII electron gun system[D]. Beijing: The Institute of High Energy Physics of the Chinese Academy of Sciences, 2005: 12-17 [16] 承欢, 江剑平. 阴极电子学[M]. 西安: 西北电讯工程学院出版社, 1986: 20Cheng Huan, Jiang Jianping. Cat hode elect ronics[M]. Xi'an: Xi'an Elect Riinformation Engineering Institute Press, 1986: 20 [17] 彭宇飞, 秦臻, 张篁, 等. 热阴极径向温度非均匀性对本征发射度的影响[J]. 强激光与粒子束, 2018, 30:035101 doi: 10.11884/HPLPB201830.170363Peng Yufei, Qin Zhen, Zhang Huang, et al. Intrinsic emittance of thermal cathode with radial temperature variation[J]. High Power Laser and Particle Beams, 2018, 30: 035101 doi: 10.11884/HPLPB201830.170363 [18] 秦臻, 刘平, 李晨, 等. 用于花瓣形加速器的栅控电子枪研制[J]. 强激光与粒子束, 2025, 37:044005 doi: 10.11884/HPLPB202537.240286Qin Zhen, Liu Pin, Li Chen, et al. Development of grid-controlled electron gun for rhodotron[J]. High Power Laser and Particle Beams, 2025, 37: 044005 doi: 10.11884/HPLPB202537.240286 -