留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模块化全固态波形可调冲击电压发生器

王永刚 陶正强 王琦 高毅凡 姜松 李孜 李柳霞

王永刚, 陶正强, 王琦, 等. 模块化全固态波形可调冲击电压发生器[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250021
引用本文: 王永刚, 陶正强, 王琦, 等. 模块化全固态波形可调冲击电压发生器[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250021
Wang Yonggang, Tao Zhengqiang, Wang Qi, et al. Modular all-solid-state waveform adjustable impulse voltage apparatus[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250021
Citation: Wang Yonggang, Tao Zhengqiang, Wang Qi, et al. Modular all-solid-state waveform adjustable impulse voltage apparatus[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250021

模块化全固态波形可调冲击电压发生器

doi: 10.11884/HPLPB202537.250021
基金项目: 湖北省自然科学基金项目(2024AFB852)
详细信息
    作者简介:

    王永刚,fduwangyg@163.com

    通讯作者:

    李柳霞,llx@hust.edu.cn

  • 中图分类号: TM83

Modular all-solid-state waveform adjustable impulse voltage apparatus

  • 摘要: 提出了一种不同于传统气体球间隙的冲击电压发生器,即基于电力电子技术的小型化冲击电压发生装置。其采用模块化多电平结构,以Marx拓扑作为主回路,MOSFET作为主开关,利用MATLAB通过最近电平逼近调制算法(NLM)对雷电波、或者雷电截波进行拟合、调制,通过FPGA控制模块化冲击电压发生器,产生充电电压、波前时间、波尾时间、截断时间等可通过上位机灵活调节的冲击电压波形。测试结果表明:单个冲击电压模块最大输出电压为24 kV,共30级电压输出;5个冲击电压模块串联运行时,最高可产生150级不同电平数,峰值电压可达−100 kV的雷电波、或者雷电截波。
  • 图  1  全固态冲击电压装置组成框图

    Figure  1.  Block diagram of all-solid-state impulse voltage prototype

    图  2  电路结构图

    Figure  2.  Circuit structure diagram

    图  3  充电工作图

    Figure  3.  Charging working diagram

    图  4  放电工作图

    Figure  4.  Discharge working diagram

    图  5  n级放电开关Sdn未导通放电路径图

    Figure  5.  The nth stage-discharge switch Sdn is not conducting the discharge path diagram

    图  6  驱动电路原理图

    Figure  6.  Schematic diagram of the driver circuit

    图  7  流程控制图

    Figure  7.  Schematic diagram of the driver circuit

    图  8  模块化全固态波形可调冲击电压发生器装置图

    Figure  8.  Modular all-solid-state waveform adjustable impulse voltage apparatus diagram

    图  11  同步波阻容性负载波形

    Figure  11.  Synchronous impulse resistive capacitive load waveforms

    图  12  对称三角波阻容性负载波形

    Figure  12.  Symmetrical triangle impulse resistive capacitive load

    图  9  软件设置界面

    Figure  9.  Software settings interface

    图  10  同步波空载波形

    Figure  10.  Synchronous impulse no-load waveforms

    图  13  雷电波阻容性负载波形

    Figure  13.  Lightning impulse resistive capacitive load waveforms

    图  14  同步波空载波形

    Figure  14.  Synchronous wave no-load waveforms

    图  15  不同电压下标准雷电波带载波形

    Figure  15.  Standard lightning impulse band-load waveforms at different voltages

    图  16  不同波前、波尾时间带载雷电波波形

    Figure  16.  Lightning impulse waveforms at different front and tail times

    图  17  雷电截波波形

    Figure  17.  Chopped lightning impulse waveforms

    图  18  阻容性负载输出电压电流波形图

    Figure  18.  Output Voltage and Current Waveforms for resistive capacitive load

    图  19  串联电阻阻值和寄生电感值对输出电压电流波形的影响

    Figure  19.  The Influence of Series Resistance and Parasitic Inductance on Output Voltage and Current Waveform

  • [1] 蔡力, 柯逸丰, 李进, 等. 基于高速摄像观测的风电场雷击风机发展过程和特性分析[J]. 电工技术学报, 2021, 36(s1):303-310

    Cai Li, Ke Yifeng, Li Jin, et al. Development process and characteristic analysis of the natural lightning strike on wind turbine based on high-speed camera observation[J]. Transactions of China Electrotechnical Society, 2021, 36(s1): 303-310
    [2] 范雅蓓, 周蜜, 王建国, 等. 实验室类回击电流与通道光强度的关系[J]. 高电压技术, 2021, 47(12):4404-4411

    Fan Yabei, Zhou Mi, Wang Jianguo, et al. Correlation between laboratory generated return-stroke-like current and the channel luminosity[J]. High Voltage Engineering, 2021, 47(12): 4404-4411
    [3] 王晓明, 孙兆冲, 侯召政, 等. 一种晶闸管开关冲击电压发生器的工作特性[J]. 高压电器, 2008, 44(3):283-286

    Wang Xiaoming, Sun Zhaochong, Hou Zhaozheng, et al. A Thyristor Marx generator and its charging/discharging characteristics[J]. High Voltage Apparatus, 2008, 44(3): 283-286
    [4] Apse-Apsitis P, Steiks I, Porins R, et al. High voltage, high frequency, high bandwidth sweeping arbitrary waveform challenge: overall design concept[C]//IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). 2019: 1-4.
    [5] Abdelsalam I, Elgenedy M A, Ahmed S, et al. Full-bridge modular multilevel submodule-based high-voltage bipolar pulse generator with low-voltage DC, input for pulsed electric field applications[J]. IEEE Transactions on Plasma Science, 2017, 45(10): 2857-2864. doi: 10.1109/TPS.2017.2743822
    [6] Pang Lei, Ye Mingtian, Li Geqi, et al. A high voltage multi level arbitrary waveform generator for insulation testing[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 405-411. doi: 10.1109/TDEI.2019.007730
    [7] Kazemi M R, Sugai T, Tokuchi A, et al. Waveform control of pulsed-power generator based on solid-state LTD[J]. IEEE Transactions on Plasma Science, 2017, 45(2): 247-251. doi: 10.1109/TPS.2016.2640315
    [8] Fairbanks A J, Crawford T D, Vaughan M E, et al. Simulated and measured output from a composite nonlinear transmission line driven by a blumlein pulse generator[J]. IEEE Transactions on Plasma Science, 2021, 49(11): 3383-3391. doi: 10.1109/TPS.2021.3114449
    [9] Alexeenko V, Zherlitsyn A, Kondratiev K. Linear pulse transformer with pulse repetition up to 5 Hz[C]//2021 IEEE Pulsed Power Conference (PPC). 2021: 1-3.
    [10] Zhang Xinhao, Li Gang. High-frequency bipolar pulse power supply based on improved Marx generator for medical applications[C]//2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia). 2020: 2505-2508.
    [11] Jiang Weihua. Review of solid-state linear transformer driver technology[J]. Matter and Radiation at Extremes, 2018, 3(4): 159-164. doi: 10.1016/j.mre.2018.02.001
    [12] van Oorschot J J, Huiskamp T. Fast and flexible, arbitrary waveform, 20-kV, solid-state, impedance-matched Marx generator[J]. IEEE Transactions on Plasma Science, 2023, 51(2): 560-571. doi: 10.1109/TPS.2023.3235418
    [13] Lesnicar A, Marquardt R. An innovative modular multilevel converter topology suitable for a wide power range[C]//2003 IEEE Bologna Power Tech Conference Proceedings. 2023.
    [14] Mi Yan, Wan Hui, Bian Changhao, et al. An MMC-based modular unipolar/bipolar high-voltage nanosecond pulse generator with adjustable rise/fall time[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 515-522. doi: 10.1109/TDEI.2019.007746
    [15] Sarnago H, Burdío J M, García-Sánchez T, et al. GaN-based versatile waveform generator for biomedical applications of electroporation[J]. IEEE Access, 2020, 8: 97196-97203. doi: 10.1109/ACCESS.2020.2996426
    [16] Álvarez-Gariburo I, Sarnago H, Lucía Ó, et al. Design and optimization of a SiC-based versatile bidirectional high-voltage waveform generator[C]//2022 IEEE Applied Power Electronics Conference and Exposition (APEC). 2022: 1333-1337.
    [17] Jiang Song, Shi Haozhi, Wang Zexuan, et al. A bipolar modular multilevel generator based on half-bridge and special full-bridge for electroporation applications[J]. IEEE Transactions on Plasma Science, 2021, 49(6): 1920-1927. doi: 10.1109/TPS.2021.3080327
    [18] Keith W D, Pringle D, Rice P, et al. Distributed magnetic coupling synchronizes a stacked 25-kV MOSFET switch[J]. IEEE Transactions on Power Electronics, 2000, 15(1): 58-61. doi: 10.1109/63.817363
  • 加载中
图(19)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  14
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-06
  • 修回日期:  2025-04-09
  • 录用日期:  2025-03-25
  • 网络出版日期:  2025-05-30

目录

    /

    返回文章
    返回