留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高真空联锁保护系统中的压强分布瞬态分析

常仁超 尉伟 赵峰 朱潇潇 张浩

常仁超, 尉伟, 赵峰, 等. 超高真空联锁保护系统中的压强分布瞬态分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250023
引用本文: 常仁超, 尉伟, 赵峰, 等. 超高真空联锁保护系统中的压强分布瞬态分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250023
Chang Renchao, Wei Wei, Zhao Feng, et al. Transient analysis of pressure distribution in ultra-high vacuum interlock protection system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250023
Citation: Chang Renchao, Wei Wei, Zhao Feng, et al. Transient analysis of pressure distribution in ultra-high vacuum interlock protection system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250023

超高真空联锁保护系统中的压强分布瞬态分析

doi: 10.11884/HPLPB202537.250023
基金项目: 深圳市科技计划项目(JCYJ20220530140807017)
详细信息
    作者简介:

    常仁超,changrenchao@mail.iasf.ac.cn

    通讯作者:

    尉 伟,weiwei@mail.iasf.ac.cn

  • 中图分类号: TB79

Transient analysis of pressure distribution in ultra-high vacuum interlock protection system

  • 摘要: 深圳中能高重频自由电子激光装置(S3FEL)是一台规划中的软X射线自由电子激光(FEL)装置,基于TESLA(TeV Energy Superconducting Linear Accelerator)型超导射频腔的直线加速器用于获得高重频高梯度的加速场,超导射频腔所在的低温超导模组是S3FEL装置中最具挑战的核心设备。超高真空差分段位于低温超导模组束流管出口,用于实现电子束运行管道在低温模组段与常温段的过渡,同时差分段上要求具有真空联锁保护,用于在突发情况下对低温模组内超导射频腔的保护。传统的快速关闭阀保护计算中仅按照气体分子速率进行计算,本文通过根据流态判据,划分快阀传感器至模组出口区域并开展有限元法和蒙特卡罗法计算,实现快速保护过程的瞬态分析。快阀传感器—快阀段真空室内瞬态压强分布计算结果表明,快阀传感器设置在距离快阀8~10 m位置可提供足够的缓冲反应时间,使快阀有足够时间做出动作响应;差分段瞬态压强分布计算中,当发生等效泄漏尺寸为0.5 mm的突发泄漏时,当低温测门阀完全关闭时,此处的压强最高达到10−5 Pa,仍能维持较好的高真空环境并满足离子泵的工作要求。此工作为S3FEL的差分段设计提供重要理论依据。
  • 图  1  差分段模型

    Figure  1.  Model of differential system

    图  2  低温模组出口处真空布局

    Figure  2.  Vacuum layout of cryomodule outlet

    图  3  快阀传感器-快阀段仿真模型

    Figure  3.  Model of fast closing valve to sensor

    图  4  差分段仿真模型

    Figure  4.  Model of differential system

    图  5  t=1000 ms时刻漏孔附近速度分布

    Figure  5.  Velocity distribution around leakage at t=1000 ms

    图  6  不同时刻下漏孔附近速度分布

    Figure  6.  Velocity distribution around leakage at different times

    图  7  快阀传感器-快阀段管道内压强分布瞬态变化

    Figure  7.  Transient change of pressure distribution in vacuum pipeline

    图  8  不同距离下压强时间曲线

    Figure  8.  Pressure vs time at different distances

    图  9  差分段入口边界条件

    Figure  9.  Inlet boundary condition of differential system

    图  10  差分管道轴向压强分布瞬态变化

    Figure  10.  Transient change of pressure distribution in differential pipeline

    图  11  差分管道轴向压强分布瞬态变化

    Figure  11.  Transient change of pressure distribution in differential pipeline

  • [1] 赵振堂. 先进X射线光源加速器原理与关键技术[M]. 上海: 上海交通大学出版社, 2020

    Zhao Zhentang. Principles and key technologies of advanced X-ray light source accelerators[M]. Shanghai: Shanghai Jiao Tong University Press, 2020
    [2] Huang Zhirong, Lindau I. SACLA hard-X-ray compact FEL[J]. Nature Photonics, 2012, 6(8): 505-506. doi: 10.1038/nphoton.2012.184
    [3] Zapfe K, Böhnert M, Hensler O, et al. The vacuum system of the European X-ray free electron laser XFEL[J]. Journal of Physics: Conference Series, 2008, 100: 092001. doi: 10.1088/1742-6596/100/9/092001
    [4] Zhao Zhentang, Wang Dong, Gu Qiang, et al. SXFEL: a soft X-ray free electron laser in China[J]. Synchrotron Radiation News, 2017, 30(6): 29-33. doi: 10.1080/08940886.2017.1386997
    [5] Bharadwaj V. LCLS II design[R]. Menlo Park: SLAC National Accelerator Laboratory, 2018.
    [6] Huang Yawei, Yao Zhitao, Liu Yuefeng, et al. Design and test results of the vacuum barrier for SHINE linac[C]//Proceedings of the 28th International Cryogenic Engineering Conference and International Cryogenic Materials Conference. 2023: 256-264.
    [7] Wang Xiaofan, Zeng Li, Shao Jiahang, et al. Physical design for Shenzhen superconducting soft X-ray free-electron laser (S3FEL)[C]//14th International Particle Accelerator Conference. 2023: 1852-1855.
    [8] 张浩, 赵峰, 林涵文, 等. S3FEL束流测试平台注入段废束桶束窗设计[J]. 强激光与粒子束, 2025, 37: 054001

    Zhang Hao, Zhao Feng, Lin Hanwen, et al. Design of injector dump beam window for the electron beam test platform of S3FEL[J]. High Power Laser and Particle Beams, 2025, 37: 054001
    [9] 张浩, 黄礼明, 林涵文, 等. S3FEL束流测试平台注入段废束桶束窗安全性分析[J]. 强激光与粒子束, 2025, 37: 106032

    Zhang Hao, Huang Liming, Lin Hanwen, et al. Safety analysis of injector dump beam window for the electron beam test platform of S3FEL[J]. High Power Laser and Particle Beams, 2025, 37: 106032
    [10] Hu L B, Wang X L, Yang L, et al. Conceptual design of S3FEL cryogenic system[J]. IOP Conference Series: Materials Science and Engineering, 2022, 1240: 012092. doi: 10.1088/1757-899X/1240/1/012092
    [11] Li Han, He Chaofeng, Yue Weiming, et al. Dedicate SRF cryomodule test facilities for S3FEL[C]//21st International Conference on RF Superconductivity. 2023: 298-301.
    [12] Passarelli D, Parise M, Nicol T H, et al. High-vacuum simulations and measurements on the SSR1 cryomodule beam-line[C]//17th International Conference on RF Superconductivity. 2015: 754-756.
    [13] Swierblewski J, Bednarski M, Dzieza B, et al. Improvements of the mechanical, vacuum and cryogenic procedures for European XFEL cryomodule testing[C]//17th International Conference on RF Superconductivity. 2015: 906-909.
    [14] Qin Yuanshuai, Zhang Peng, Cai Hanjie, et al. Transfer line including vacuum differential system for a high-power windowless target[J]. Physical Review Accelerators and Beams, 2020, 23: 113002. doi: 10.1103/PhysRevAccelBeams.23.113002
    [15] Wang Wen, Zhang Qingkun, Wang Yongfeng, et al. Design and experimental validation of differential pumped vacuum system for HINEG windowless gas target[J]. Fusion Engineering and Design, 2023, 189: 113465. doi: 10.1016/j.fusengdes.2023.113465
    [16] Zhang Jianchuan, Min Yue, Li Lili, et al. Design and realization of vacuum control and interlock system for SESRI project[J]. Radiation Detection Technology and Methods, 2022, 6(4): 502-507. doi: 10.1007/s41605-022-00357-x
    [17] Pigny G, Antoniotti F, Boivin J P, et al. Measurements, alarms and interlocks in the vacuum control system of the LHC[C]//15th International Conference on Accelerator and Large Experimental Physics Control Systems. 2015: 338-341.
    [18] 达道安. 真空设计手册[M]. 2版. 北京: 国防工业出版社, 1991

    Da Dao’an. Handbook of vacuum technology[M]. 2nd ed. Beijing: National Defense Industry Press, 1991
    [19] Bi Hailin, Zhang Yicong, He Ziyang, et al. A coupled NS-DSMC method applied to supersonic molecular beam and experimental validation[J]. Vacuum, 2023, 214: 112228. doi: 10.1016/j.vacuum.2023.112228
    [20] Dommach M, Di Felice M, Dickert B, et al. The photon beamline vacuum system of the European XFEL[J]. Journal of Synchrotron Radiation, 2021, 28(4): 1229-1236. doi: 10.1107/S1600577521005154
  • 加载中
图(11)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-13
  • 修回日期:  2025-10-01
  • 录用日期:  2025-09-24
  • 网络出版日期:  2025-10-17

目录

    /

    返回文章
    返回