留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种RF屏蔽型CF法兰-密封圈结构设计

赵峰 朱潇潇 尉伟 常仁超 张浩 林涵文

赵峰, 朱潇潇, 尉伟, 等. 一种RF屏蔽型CF法兰-密封圈结构设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250024
引用本文: 赵峰, 朱潇潇, 尉伟, 等. 一种RF屏蔽型CF法兰-密封圈结构设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250024
Zhao Feng, Zhu Xiaoxiao, Wei Wei, et al. Design of RF shielding CF flange copper ring structure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250024
Citation: Zhao Feng, Zhu Xiaoxiao, Wei Wei, et al. Design of RF shielding CF flange copper ring structure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250024

一种RF屏蔽型CF法兰-密封圈结构设计

doi: 10.11884/HPLPB202537.250024
基金项目: 深圳市科技计划项目(JCYJ20220530140807017)
详细信息
    作者简介:

    赵 峰,1138973524@qq.com

    通讯作者:

    尉 伟,weiwei@mail.iasf.ac.cn

  • 中图分类号: TL35;TB75

Design of RF shielding CF flange copper ring structure

  • 摘要: 高能电子加速器中,束流与真空室相互作用产生的尾场会引发束流不稳定性,此现象在高重频(>105 Hz)超导加速器中尤为明显。全金属加速器真空室大量使用的CF刀口法兰,其连接处截面突变是导致产生束流耦合阻抗的主要来源之一。设计了一种RF屏蔽型法兰-密封圈连接结构,其目的是通过实现法兰-密封圈-法兰预紧密封后的平滑过渡,有效减少阻抗。首先采用3D电磁仿真CST软件对比仿真了连接过渡段不同径向台阶和轴向间隙参数下的阻抗效应,给出了相关参数的允许范围。然后通过ANSYS软件对屏蔽法兰-铜圈结构进行了形变仿真,初步制定了不同型号的屏蔽密封圈的内径几何参数,在屏蔽法兰-密封圈的真空密封试验中,验证了预紧力矩≥6 N·m时即可实现有效的超高真空密封,并且通过屏蔽法兰-密封铜圈过渡段径向台阶和轴向间隙测试试验,得到了最优预紧力矩和屏蔽铜圈的关键尺寸参数。最后采用对光滑真空管段、标准法兰-密封圈过渡段和屏蔽法兰-密封圈过渡段的功率损失和阻抗进行了仿真计算,验证了所设计的RF屏蔽型法兰-密封圈连接结构可以有效地实现阻抗屏蔽。
  • 图  1  法兰铜圈连接过渡段示意图

    Figure  1.  Schematic diagram of the transition section of the flange copper ring connection

    图  2  法兰铜圈连接过渡段射频阻抗仿真

    Figure  2.  RF Impedance Simulation of Vacuum Flange Transition with Copper Gasket

    图  3  屏蔽法兰-密封圈关键尺寸示意图

    Figure  3.  Shielding flange-copper ring key dimension diagram

    图  4  屏蔽法兰-铜圈仿真模型

    Figure  4.  Shield flange-copper ring simulation model

    图  5  不同型号的屏蔽铜圈塑性变形仿真结果

    Figure  5.  Simulation results of plastic deformation of different types of shielded copper ring

    图  6  密封试验装置

    Figure  6.  testing device

    图  8  屏蔽铜圈试验样件

    Figure  8.  Shielding copper ring test sample

    图  7  检漏测试

    Figure  7.  Seal the leak detection process

    图  9  不同预紧力矩下装置漏率结果

    Figure  9.  Leakage rate of the device under different fastening torques

    图  10  高温烘烤后装置漏率检测结果

    Figure  10.  Leakage rate of the device after high temperature baking

    图  11  测量点位置

    Figure  11.  Measure the point location

    图  12  千分表测量过程

    Figure  12.  The dial meter measurement process

    图  13  铜圈半径形变测试结果

    Figure  13.  Test results of copper ring distortion

    图  14  屏蔽铜圈形变测试验证

    Figure  14.  Shielded copper ring test verification

    图  15  三坐标测量仪测量过程

    Figure  15.  The coordinate measurement process

    图  16  阻抗仿真模型示意图

    Figure  16.  Impedance simulation model diagram

    图  17  功率损失仿真对比结果

    Figure  17.  Impedance simulation results

    图  18  阻抗仿真对比

    Figure  18.  Impedance simulation comparison

    表  1  不同型号屏蔽铜圈内外径加工尺寸

    Table  1.   Different types of shielded copper inner diameter and outer diameter processing size

    types DN35 DN50 DN63 DN100
    internal diameter /mm 350.020.04 500.040.06 630.060.08 1000.080.16
    external diameter /mm 48.3-0.0110 61.6-0.0130 82.5-0.0150 120.6-0.0180
    下载: 导出CSV

    表  2  屏蔽法兰-密封圈连接过渡段径向台阶高度

    Table  2.   The height of the radial steps of the copper ring flange connection transition section

    moment /N·m 10 11 12 13 14 15 16
    ΔD/um sample 1 −58 −40 −30 −15 −5 10 20
    sample 2 −50 −43 −38 −25 −10 5 0
    sample 3 −55 −37 −29 −10 −0 5 10
    sample 4 −56 −40 −30 −15 −5 10 20
    sample 5 −58 −39 30 −10 −0 9 15
    下载: 导出CSV

    表  3  铜圈法兰连接过渡段轴向间隙

    Table  3.   The copper ring flange connects the axial clearance of the transition section

    position 1/mm 2/mm 3/mm 4/mm 5/mm 6/mm 7/mm 8/mm
    Step height 0.4 mm Screw side 0.2 0.2 0.2 0.18 0.18 0.18 0.2 0.2
    Nut side 0.17 0.18 0.19 0.2 0.18 0.18 0.18 0.17
    Step height 0.45 mm Screw side 0.15 0.14 0.13 0.13 0.13 0.14 0.16 0.16
    Nut side 0.16 0.17 0.16 0.19 0.18 0.18 0.18 0.18
    Step height 0.5 mm Screw side 0.1 0.09 0.062 0.058 0.068 0.068 0.096 0.1
    Nut side 0.084 0.088 0.088 0.118 0.118 0.118 0.11 0.09
    下载: 导出CSV
  • [1] Chao A. Beam dynamics of collective instabilities in high-energy accelerators[C]//Proceedings of the CAS-CERN Accelerator School: Intensity Limitations in Particle Beam. 2017: 43-43.
    [2] Dohlus M, Wanzenberg R. An introduction to wake fields and impedances[C]//Proceedings of the CAS-CERN Accelerator School on Intensity Limitations in Particle Beams. 2017: 15.
    [3] Davtyan A, Isunts H, Dekhtiarov V, et al. The analysis and experimental research of ultrahigh vacuum ConFlat-type flange joints applied in accelerator and space technology[J]. Journal of Instrumentation, 2023, 18: P03013. doi: 10.1088/1748-0221/18/03/P03013
    [4] Schroer C G, Falkenberg C. Hard X-ray nanofocusing at low-emittance synchrotron radiation sources[J]. Journal of Synchrotron Radiation, 2014, 21: 996-1005. doi: 10.1107/S1600577514016269
    [5] Suetsugu Y, Shirai M, Ohtsuka M. Application of a Matsumoto-Ohtsuka-type vacuum flange to beam ducts for future accelerators[J]. Journal of Vacuum Science & Technology A, 2005, 23(6): 1721-1727.
    [6] Suetsugu Y, Shirai M, Ohtsuka M, et al. Development of copper-alloy Matsumoto–Ohtsuka-type vacuum flanges and its application to accelerator beam pipes[J]. Journal of Vacuum Science & Technology A, 2009, 27(6): 1303-1309.
    [7] Heifets S A, Kheifets S A. Coupling impedance in modern accelerators[J]. Reviews of Modern Physics, 1991, 63(3): 631-673. doi: 10.1103/RevModPhys.63.631
    [8] Migliorati M, Palumbo L, Zannini C, et al. Resistive wall impedance in elliptical multilayer vacuum chambers[J]. Physical Review Accelerators and Beams, 2019, 22: 121001. doi: 10.1103/PhysRevAccelBeams.22.121001
    [9] Bian Baoyuan, Hong Yuanzhi, Wang Sihui, et al. Experimental research on the longitudinal coupling impedance of RF-shielded BPM-bellows assemblies designed for the Hefei Advanced Light Facility[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1042: 167450. doi: 10.1016/j.nima.2022.167450
    [10] Suetsugu Y, Ohshima K, Kanazawa K. Design studies on a vacuum bellows assembly with radio frequency shield for the KEK B factory[J]. Review of Scientific Instruments, 1996, 67(8): 2796-2811. doi: 10.1063/1.1147110
    [11] Suetsugu Y, Shirai M, Ohtsuka M. Application of stainless-steel, copper-alloy and aluminum-alloy MO (Matsumoto-Ohtsuka)-type flanges to accelerator beam pipes[C]//Proceedings of the 1st International Particle Accelerator Conference. 2010: 3855-3857.
    [12] Huttel E. Materials for accelerator vacuum systems[R]. Snekersten: CERN, 1999: 237-255.
    [13] Virostek S, Hoff M, Li D, et al. Mechanical design & analysis of a 200 MHz, bolt-together RFQ for the accelerator driven neutron source[C]//Proceedings of the 2007 IEEE Particle Accelerator Conference (PAC). 2007: 2313-2315.
    [14] Chen Z, Gautier C, Hemez F, et al. Vacuum seals design and testing for a linear accelerator of the National Spallation Neutron Source[R]. Los Alamos: Los Alamos National Laboratory, 2000.
    [15] Wegman R F, Van Twisk J. Copper and copper alloys[M]//Wegman R F, Van Twisk J. Surface Preparation Techniques for Adhesive Bonding. 2nd ed. Boston: William Andrew, 2013: 83-91.
    [16] Dylla H F, Biallas G, Dillon-Townes L A, et al. Design and installation of a low particulate, ultrahigh vacuum system for a high power free-electron laser[J]. Journal of Vacuum Science & Technology A, 1999, 17(4): 2113-2118.
    [17] Mapes M, Smart L, Weiss D, et al. Energy recovery linac: vacuum[R]. New York: Brookhaven National Laboratory (BNL), 2010.
    [18] Wei J. Synchrotrons and accumulators for high intensity protons: issues and experiences[R]. New York: Brookhaven National Laboratory (BNL), 2000.
    [19] Kirbie H, Caporaso G, Goerz D, et al. MHz repetition rate solid-state driver for high current induction accelerators[C]//Proceedings of the 1999 Particle Accelerator Conference. 1999: 625-627.
    [20] Kennelly A E. Impedance[J]. Transactions of the American Institute of Electrical Engineers, 1893, X: 172-232.
    [21] Safi D, Birtel P, Meyne S, et al. A traveling-wave tube simulation approach with CST particle studio[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2257-2263. doi: 10.1109/TED.2018.2798810
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  23
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-14
  • 修回日期:  2025-07-15
  • 录用日期:  2025-07-16
  • 网络出版日期:  2025-08-21

目录

    /

    返回文章
    返回