留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属微喷射诊断中脉冲X光照相图像面密度测量方法

景越峰 康旭 王维荣

景越峰, 康旭, 王维荣. 金属微喷射诊断中脉冲X光照相图像面密度测量方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250025
引用本文: 景越峰, 康旭, 王维荣. 金属微喷射诊断中脉冲X光照相图像面密度测量方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250025
Jing Yuefeng, Kang Xu, Wang Weirong. Measurement method for areal density of pulsed X-ray photographic images in metal ejection diagnosis[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250025
Citation: Jing Yuefeng, Kang Xu, Wang Weirong. Measurement method for areal density of pulsed X-ray photographic images in metal ejection diagnosis[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250025

金属微喷射诊断中脉冲X光照相图像面密度测量方法

doi: 10.11884/HPLPB202537.250025
基金项目: 冲击波物理与爆轰物理全国重点实验基金项目(2024CXPTGFTT06411);
详细信息
    作者简介:

    景越峰,ifpjyf@sina.com

  • 中图分类号: TP391

Measurement method for areal density of pulsed X-ray photographic images in metal ejection diagnosis

  • 摘要: 提出了一种基于对比标定的微喷射X光图像面密度数据测量方法,该方法通过中值滤波来减小白斑噪声的影响,利用空场图像来校正光场分布及探测器响应的不均匀性问题,通过对Roll-Bar客体的成像获取系统点扩展函数,并利用成像系统点扩展函数及基于改进的Tikhonov正则化的图像复原方法来减小模糊对X光图像的影响。给出了获取微喷射X光图像面密度信息的处理流程,对静态客体实验图像面密度反演的验证表明,提出的面密度测量方法可以较准确的获取金属微喷射实验X光图像面密度信息。
  • 图  1  Roll-Bar法成像布局简图

    Figure  1.  Sketch of Roll-Bar Layout

    图  2  点扩展函数网格示意图

    Figure  2.  the cross section of the object

    图  3  Roll-Bar 法实验图像

    Figure  3.  Image of Roll-Bar

    图  4  实验图像点扩展函数测量结果

    Figure  4.  Measurement results of point spread function of experimental images

    图  5  静态实验图像及其标记块客体反演结果面密度平均相对误差

    Figure  5.  Experimental images and average relative error of area density of stepped wedges

  • [1] 邵建立, 何安民, 王裴. 微喷射现象数值模拟研究进展概述[J]. 高压物理学报, 2019, 33(3):030110 doi: 10.11858/gywlxb.20190786

    Shao Jianli, He Anmin, Wang Pei. Brief review of research progress on numerical simulation of ejection phenomena[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030110 doi: 10.11858/gywlxb.20190786
    [2] 朱建士, 胡晓棉, 王裴, 等. 爆炸与冲击动力学若干问题研究进展[J]. 力学进展, 2010, 40(4):400-423 doi: 10.6052/1000-0992-2010-4-J2009-144

    ZHU Jianshi, HU Xiaomian, WANG Pei, et al. A review on research progress in explosion mechanics and impact dynamics[J]. Advances in Mechanics, 2010, 40(4): 400-423 doi: 10.6052/1000-0992-2010-4-J2009-144
    [3] FUNG J, HARRISON A K, CHITANVIS S, et al. Ejecta source and transport modeling in the FLAG hydrocode[J]. Computers & Fluids, 2013, 83(16): 177-186.
    [4] 叶雁, 李军, 朱鹏飞, 等. 脉冲X光照相在微物质喷射诊断中的应用[J]. 高压物理学报, 2013, 27(3):398-402 doi: 10.11858/gywlxb.2013.03.013

    YE Yan, LI Jun, ZHU PengFei, et al. Flash X-ray radiography for diagnosing the ejecta from shocked metal surface[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 398-402 doi: 10.11858/gywlxb.2013.03.013
    [5] 张林, 李英华, 程晋明, 等. 激光驱动X光背光照相技术在金属靶微层裂研究中的应用探索[J]. 强激光与粒子束, 2016, 28(4):23-27 doi: 10.11884/HPLPB201628.121003

    ZHANG Lin, LI YingHua, CHENG Jin Ming, et al. Exploration of laser-driven X-ray backlighting applied in research of micro-spalls of metal target[J]. High Power Laser and Particle Beams, 2016, 28(4): 23-27 doi: 10.11884/HPLPB201628.121003
    [6] Weihua He, Tao Xi, Min Shui, et al. High-energy X-ray radiography investigation on the ejecta physics of laser shock-loaded tin[J]. AIP Advances, 2019, 9(8): 085002. doi: 10.1063/1.5109748
    [7] 王维荣, 陈书杨, 王学军, 等. 一种适用于复杂加载状态下微喷射物质面密度测量的Asay膜方法[J]. 爆炸与冲击, 2024, 44(3):034101 doi: 10.11883/bzycj-2023-0089

    Wang Weirong, Chen Shuyang, Wang Xuejun, et al. An improved Asay foil method for measuring areal density of ejecta under complex loading conditions[J]. Explosion and Shock Waves, 2024, 44(3): 034101 doi: 10.11883/bzycj-2023-0089
    [8] 王维荣, 李欣竹, 陈书杨, 等. 强冲击作用下疏松锡的动态响应特性[J]. 中国科学: 物理学 力学 天文学, 2020, 50(10):104707 doi: 10.1360/SSPMA-2020-0053

    Wang WeiRong, Li XinZhu, Chen Shu Yang, et al. Dynamics behavior of porous tin under strong shockwave impact[J]. Sci Sin-Phys Mech Astron, 2020, 50(10): 104707 doi: 10.1360/SSPMA-2020-0053
    [9] Jianting Xin, Anmin He, Wenbin Liu, et al. X-ray radiography of microjetting from grooved surfaces in tin sample subjected to laser driven shock[J]. Journal of Micromechanics and Microengineering, 2019, 29(9) :.
    [10] F. Mizusako, K. Ogasawara, K. Kondo, et al. Flash x-ray radiography using imaging plates for the observation of hypervelocity objects[J]. Review of Scientific Instrument, 2005, 76(2) : 025102.
    [11] 石金水. 闪光X射线照相光源的发展[J]. 强激光与粒子束, 2022, 34(10):104008 doi: 10.11884/HPLPB202234.220108

    Shi JinShui. Development of flash X-ray radiography source[J]. High Power Laser and Particle Beams, 2022, 34(10): 104008 doi: 10.11884/HPLPB202234.220108
    [12] 贾清刚, 毛朋成, 王文远, 等. X光照相散射定量技术初步研究[J]. 强激光与粒子束, 2022, 34(11):116001 doi: 10.11884/HPLPB202234.210488

    Jia QingGang, Mao PengCheng, Wang WenYuan, et al. Preliminary study on scatter quantification method for flash Multi-MeV radiography[J]. High Power Laser and Particle Beams, 2022, 34(11): 116001 doi: 10.11884/HPLPB202234.210488
    [13] A. Bouhamidi, R. Enkhbat, K. Jbilou. Conditional gradient Tikhonov method for a convex optimization problem in image restoration[J]. Journal of Computational and Applied Mathematics, 2014, 255(complete): 580-592.
    [14] 杨天骥, 姜亚琴, 郭小亚. 基于Tikhonov正则的图像盲复原算法[J]. 计算机技术与发展, 2022, 32(5):29-35 doi: 10.3969/j.issn.1673-629X.2022.05.005

    Yang TianJi, Jiang YaQin, Guo XiaoYa. Blind Image Restoration Algorithm Based on Tikhonov Regularization[J]. Computer Technology and Development, 2022, 32(5): 29-35 doi: 10.3969/j.issn.1673-629X.2022.05.005
    [15] 施将君, 刘军, 刘进. 高能X射线源尺寸测量方法的Monte Carlo模拟[J]. 清华大学学报(自然科学版), 2007, 47(s1):951-954 doi: 10.3321/j.issn:1000-0054.2007.z1.013

    Shi Jiangjun, Liu Jun, Liu Jin. Monte Carlo simulations of high energy X-ray source spot sizes[J]. Journal of Tsinghua University (Natural Science Edition), 2007, 47(s1): 951-954 doi: 10.3321/j.issn:1000-0054.2007.z1.013
    [16] Schech von Wittenau A E, Logan C M, Rikard R D. Using a tungsten rollbar to characterize the source s pot of a megavoltage bremsstrahlung linac[J]. Medical Physics, 2002, 29(8): 1797-1806. doi: 10.1118/1.1494834
    [17] 王婉丽, 江孝国, 吴廷烈, 等. 台阶法测量CCD成像系统MTF的数据处理方法[J]. 光电子激光, 2002, 13(2):173-175

    Wang Wanli, Jiang Xiaoguo, Wu Tinglie, et al. Data processing method of measuring CCD image MTF with step sample[J]. Journal of Optoelectronics Laser, 2002, 13(2): 173-175
    [18] Ekdahl C. Characterizing flash-radiography source spots[J]. Journal of the Optical Society of America A, 2011, 28(12): 2501-2509. doi: 10.1364/JOSAA.28.002501
    [19] 陈法新, 郑坚, 李正宏, 等. 三种逆阿贝尔变换方法比较[J]. 数值计算与计算机应用, 2007, 28(3):221-229 doi: 10.3969/j.issn.1000-3266.2007.03.007

    Chen Faxin, Zheng Jian, Li Zhenghong, et al. Comparison of three methods for Abel inversion[J]. Journal of Numerical Computing and Computer Applications, 2007, 28(3): 221-229 doi: 10.3969/j.issn.1000-3266.2007.03.007
    [20] 江少恩, 刘忠礼, 唐道源, 等. 基于快速傅里叶变换和汉克耳变换的逆阿贝尔变换[J]. 光子学报, 1999, 19(5):660-664

    Jiang Shaoen, Liu Zhongli, Tang Daoyuan, et al. Inverted Abel transform based on FFT and Henkel transform[J]. Acta Photonica Sinica, 1999, 19(5): 660-664
  • 加载中
图(5)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  14
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-15
  • 修回日期:  2025-05-16
  • 录用日期:  2025-04-24
  • 网络出版日期:  2025-06-05

目录

    /

    返回文章
    返回