留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四相位VISAR图像配准方法

关赞洋 彭晓世 理玉龙 王峰

关赞洋, 彭晓世, 理玉龙, 等. 四相位VISAR图像配准方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250027
引用本文: 关赞洋, 彭晓世, 理玉龙, 等. 四相位VISAR图像配准方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250027
Guan Zanyang, Peng Xiaoshi, Li Yulong, et al. Four-phase-VISAR images registration method[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250027
Citation: Guan Zanyang, Peng Xiaoshi, Li Yulong, et al. Four-phase-VISAR images registration method[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250027

四相位VISAR图像配准方法

doi: 10.11884/HPLPB202537.250027
基金项目: 等离子体物理全国重点实验室基金项目(6142A04240206, JCKYS2024212804);国家自然科学基金项目(12127810)
详细信息
    作者简介:

    关赞洋,gzy0707@mail.ustc.edu.cn

    通讯作者:

    理玉龙,2013may6th@sina.com

    王 峰,lfrc_wangfeng@163.com

  • 中图分类号: O436.1;TP391

Four-phase-VISAR images registration method

  • 摘要: 为了实现二维VISAR四相位图像配准,提出了一种基于SIFT算法的图像配准方法。首先利用SIFT算法分别提取基准图像和待配准图像的特征点,这一步中充分考虑了二维VISAR图像本身的特点,通过引入同源的无干涉图像获得了更准确的提取结果。接着对特征点进行粗匹配,并进一步设计了角度直方图和特征点距离两步筛选法进行精匹配。然后,根据最终的匹配结果计算变换矩阵,最后将变换矩阵应用于待配准的图像进行插值变换实现图像配准。以四相位图像的其中一幅作为基准对剩余三幅图像进行配准,实验结果表明:无条纹图像的相关性从0.5提升至0.9,有条纹图像的截断相位计算精度有了大幅提升,有效解决了二维VISAR四相位图像的配准问题。
  • 图  1  2D-VISAR光路示意图

    Figure  1.  Schematic diagram of the 2D-VISAR

    图  2  2D-VISAR图像

    Figure  2.  2D-VISAR images

    图  3  基于SIFT算法的二维VISAR四相位图像配准流程图

    Figure  3.  Flowchart of 2D-VISAR four-phase images registration based on SIFT

    图  4  特征点提取结果

    Figure  4.  Result of feature points extraction

    图  5  特征点粗匹配结果

    Figure  5.  Rough matching result of feature points

    图  6  两步筛选结果

    Figure  6.  Result of two-step filtration

    图  7  配准结果

    Figure  7.  Result of registration

    图  8  截断相位计算结果

    Figure  8.  Result of wrapped phase

    表  1  无条纹图像配准前后图像相关系数

    Table  1.   Correlation coefficient of non-fringe images before registration and after registration

    I2 I3 I4
    before registration 0.5752 0.5707 0.5383
    after registration 0.9272 0.8721 0.9039
    下载: 导出CSV
  • [1] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [2] Sacks R A, Darling D H. Direct drive cryogenic ICF capsules employing D-T wetted foam[J]. Nuclear Fusion, 1987, 27(3): 447-452. doi: 10.1088/0029-5515/27/3/009
    [3] Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506(7488): 343-348. doi: 10.1038/nature13008
    [4] Celliers P M, Erskine D J, Sorce C M, et al. A high-resolution two-dimensional imaging velocimeter[J]. Review of Scientific Instruments, 2010, 81: 035101. doi: 10.1063/1.3310076
    [5] Ali S J, Celliers P M, Haan S, et al. Probing the seeding of hydrodynamic instabilities from nonuniformities in ablator materials using 2D velocimetry[J]. Physics of Plasmas, 2018, 25: 092708. doi: 10.1063/1.5047943
    [6] 黄海波, 李晓玲, 熊文怡, 等. 基于SIFT算法的图像配准综述[J]. 软件导刊, 2019, 18(1):1-4

    Huang Haibo, Li Xiaoling, Xiong Wenyi, et al. A survey of image registration based on SIFT[J]. Software Guide, 2019, 18(1): 1-4
    [7] 李云红, 刘宇栋, 苏雪平, 等. 红外与可见光图像配准技术研究综述[J]. 红外技术, 2022, 44(7):641-651

    Li Yunhong, Liu Yudong, Su Xueping, et al. Review of infrared and visible image registration[J]. Infrared Technology, 2022, 44(7): 641-651
    [8] Lowe D G. Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. 1999: 1150-1157.
    [9] 黄敏. 基于特征点的图像配准技术研究[D]. 南昌: 南昌大学, 2021

    Huang Min. Research on image registration technology based on feature points[D]. Nanchang: Nanchang University, 2021
    [10] 夏晓华, 赵倩, 向华涛, 等. 多聚焦图像离焦模糊区域的SIFT特征提取[J]. 光学 精密工程, 2023, 31(24):3630-3639 doi: 10.37188/OPE.20233124.3630

    Xia Xiaohua, Zhao Qian, Xiang Huatao, et al. SIFT feature extraction method for the defocused blurred area of multi-focus images[J]. Optics and Precision Engineering, 2023, 31(24): 3630-3639 doi: 10.37188/OPE.20233124.3630
    [11] 郝帅, 吴瑛琦, 马旭, 等. 基于CycleGAN-SIFT的可见光和红外图像匹配[J]. 光学 精密工程, 2022, 30(5):602-614 doi: 10.37188/OPE.20223005.0602

    Hao Shuai, Wu Yingqi, Ma Xu, et al. Visible and infrared image matching based on CycleGAN-SIFT[J]. Optics and Precision Engineering, 2022, 30(5): 602-614 doi: 10.37188/OPE.20223005.0602
    [12] 丁国绅, 乔延利, 易维宁, 等. 基于光谱图像空间的F-SIFT特征提取与匹配[J]. 光学 精密工程, 2021, 29(5):1180-1189 doi: 10.37188/OPE.20212905.1180

    Ding Guoshen, Qiao Yanli, Yi Weining, et al. Feature extraction and matching of F-SIFT based on spectral image space[J]. Optics and Precision Engineering, 2021, 29(5): 1180-1189 doi: 10.37188/OPE.20212905.1180
    [13] 谢永清. 基于尺度不变特征变换算法实现图像匹配与校正的研究[D]. 北京: 北京邮电大学, 2022

    Xie Yongqing. Research on image matching and correction based on scale invariant feature transformation[D]. Beijing: Beijing University of Posts and Telecommunications, 2022
    [14] 曾峦, 王元钦, 谭久彬. 改进的SIFT特征提取和匹配算法[J]. 光学 精密工程, 2011, 19(6):1391-1397 doi: 10.3788/OPE.20111906.1391

    Zeng Luan, Wang Yuanqin, Tan Jiubin. Improved algorithm for SIFT feature extraction and matching[J]. Optics and Precision Engineering, 2011, 19(6): 1391-1397 doi: 10.3788/OPE.20111906.1391
    [15] 曾文锋, 李树山, 王江安. 基于仿射变换模型的图像配准中的平移、旋转和缩放[J]. 红外与激光工程, 2001, 30(1):18-20,17

    Zeng Wenfeng, Li Shushan, Wang Jiangan. Translation, rotation and scaling changes in image registration based affine transformation model[J]. Infrared and Laser Engineering, 2001, 30(1): 18-20,17
    [16] Yue Yongdou, Yu Jianqiao, Wei Yuyong, et al. A improved CoSaMP algorithm based on correlation coefficient for compressed sensing image reconstruction[J]. Journal of Computational Information Systems, 2013, 9(18): 7325-7331.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  16
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-17
  • 修回日期:  2025-06-06
  • 录用日期:  2025-05-30
  • 网络出版日期:  2025-06-23

目录

    /

    返回文章
    返回