留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于矩形谐振腔与微波探针双聚焦的含能材料小功率微波点火技术

陈毅恒 王绍飞 赵甲 谢彦召

陈毅恒, 王绍飞, 赵甲, 等. 基于矩形谐振腔与微波探针双聚焦的含能材料小功率微波点火技术[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250030
引用本文: 陈毅恒, 王绍飞, 赵甲, 等. 基于矩形谐振腔与微波探针双聚焦的含能材料小功率微波点火技术[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250030
Chen Yiheng, Wang Shaofei, Zhao Jia, et al. Low power microwave ignition technology of energetic materials based on dual-focusing of rectangular resonant cavity and microwave probe[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250030
Citation: Chen Yiheng, Wang Shaofei, Zhao Jia, et al. Low power microwave ignition technology of energetic materials based on dual-focusing of rectangular resonant cavity and microwave probe[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250030

基于矩形谐振腔与微波探针双聚焦的含能材料小功率微波点火技术

doi: 10.11884/HPLPB202537.250030
基金项目: 国家重点研发计划项目(2023YFE0115700); 火工品安全性可靠性国防科技重点实验室基金项目(6142602200304)
详细信息
    作者简介:

    陈毅恒,Chen_Yiheng@stu.xjtu.edu.cn

    通讯作者:

    王绍飞,sfwang2019@xjtu.edu.cn

  • 中图分类号: TJ55

Low power microwave ignition technology of energetic materials based on dual-focusing of rectangular resonant cavity and microwave probe

  • 摘要: 为解决小功率条件下固体含能材料微波点火问题,提出了一种基于矩形谐振腔双聚焦优化设计的小功率高场强微波点火技术。研发的微波点火装置由固态微波源、矩形谐振腔、微波探针等部分构成。其中,矩形谐振腔采用探针馈电,通过谐振作用实现能量一次聚焦,结合探针尖端对电场的畸变作用及金属置物台对电场分布空间的压缩效应,实现对谐振时腔内能量二次聚焦,并通过电磁兼容设计防止电磁波泄露。仿真与试验表明:微波点火装置在2~3 GHz范围内具有多个工作频点且频率可调,22 W功率下最大场强可达MV/m级,并能实现对小粒黑火药的有效点火,与现有装置相比,点火功率大幅减小。研发的小功率高场强微波点火技术可为固体含能材料微波点火的研究提供平台。
  • 图  1  微波点火装置示意图

    Figure  1.  Schematic diagram of microwave ignition device

    图  2  矩形谐振腔(a)TEm0l谐振模的电场变化(m, l为正整数)及(b)耦合方式

    Figure  2.  Rectangular resonant cavity (a) electric field change of TEm0l resonant mode ( m, l are positive integers ) and (b) coupling mode

    图  3  不同谐振模式对应的电场分布

    Figure  3.  The electric field distribution corresponding to different resonant modes

    图  4  谐振时腔内电场分布

    Figure  4.  The electric field distribution in the cavity during resonance

    图  5  各频率下探针前端电场强度值

    Figure  5.  The electric field intensity value of the probe front end at each frequency

    图  6  电场聚焦示意图

    Figure  6.  Electric field focusing diagram

    图  7  双聚焦设计微波谐振腔模型TM111谐振模下腔内电场分布

    Figure  7.  Dual-focusing design of microwave resonant cavity model and electric field distribution in the cavity under TM111 resonant mode

    图  8  不同结构下探针前端场强值

    Figure  8.  The electric field strength value of the probe front end under different structures

    图  9  谐振腔工作频率随金属置物台高度变化

    Figure  9.  The operating frequency of the resonator varies with the height of the metal stage

    图  10  截止波导两侧电场强度

    Figure  10.  The electric field intensity on both sides of the cut-off waveguide

    图  11  不同谐振腔参数下探针尖端场强

    Figure  11.  The probe tip field strength under different resonant cavity parameters

    图  12  优化设计后微波谐振腔模型

    Figure  12.  Microwave resonant cavity model after optimization design

    图  13  双聚焦微波谐振腔探针尖端场强

    Figure  13.  Double focusing microwave resonant cavity probe tip field strength

    图  14  微波点火试验平台

    Figure  14.  Microwave ignition test platform

    图  15  微波点火腔体实物图

    Figure  15.  Microwave ignition cavity physical diagram

    图  16  小粒黑火药微波点火现象

    Figure  16.  Microwave ignition phenomenon of small black powder

    表  1  不同频点下微波点火试验现象

    Table  1.   Microwave ignition test phenomena at different frequencies

    The frequency
    of microwave source/
    GHz
    The power of
    microwave
    source/W
    Ignition
    situation
    2.410 40 unignited
    2.450 40 unignited
    2.490 40 unignited
    2.530 40 unignited
    2.560 22 ignited
    2.565 30 ignited
    2.570 40 ignited
    2.580 40 ignited
    下载: 导出CSV
  • [1] 严启龙, 刘林林. 含能材料前沿导论[M]. 北京: 科学出版社, 2022

    Yan Qilong, Liu Linlin. Frontier introduction of energetic materials[M]. Beijing: Science Press, 2022
    [2] Daily M E, Glover B B, Son S F, et al. X-band microwave properties and ignition predictions of neat explosives[J]. Propellants, Explosives, Pyrotechnics, 2013, 38(6): 810-817. doi: 10.1002/prep.201300068
    [3] Ikuta K. Microwave ignition of wet explosives for hypervelocity[C]//Proceedings of the 2000 13th International Conference on High-Power Particle Beams. 2000: 909-913.
    [4] 刘鹤欣, 赵凤起, 秦钊, 等. 固体含能材料点火引燃技术研究进展[J]. 火炸药学报, 2023, 46(8):669-687

    Liu Hexin, Zhao Fengqi, Qin Zhao, et al. Research progress on ignition technologies of solid energetic materials[J]. Chinese Journal of Explosives & Propellants, 2023, 46(8): 669-687
    [5] 高勇. 典型材料高功率下微波介电特性研究[D]. 成都: 电子科技大学, 2019

    Gao Yong. Research on microwave dielectric characteristics of typical material under high power level[D]. Chengdu: University of Electronic Science and Technology of China, 2019
    [6] 廖虹宇. 单质含能材料点火过程温度场与燃烧波测量方法研究[D]. 绵阳: 西南科技大学, 2023

    Liao Hongyu. Research on measurement methods of temperature fields and combustion waves during ignition for single-mass energy-containing materials[D]. Mianyang: Southwest University of Science and Technology, 2023
    [7] 马晗晔, 王雨时, 王光宇. 国外不敏感炸药综述[J]. 兵器装备工程学报, 2020, 41(5):166-174 doi: 10.11809/bqzbgcxb2020.05.032

    Ma Hanye, Wang Yushi, Wang Guangyu. Summary of foreign insensitive explosives[J]. Journal of Ordnance Equipment Engineering, 2020, 41(5): 166-174 doi: 10.11809/bqzbgcxb2020.05.032
    [8] 李天宇, 王雨时, 闻泉, 等. 钝感爆炸元件技术发展综述[J]. 兵器装备工程学报, 2019, 40(7):76-84 doi: 10.11809/bqzbgcxb2019.07.016

    Li Tianyu, Wang Yushi, Wen Quan, et al. Summary of development of insensitive explosive elements[J]. Journal of Ordnance Equipment Engineering, 2019, 40(7): 76-84 doi: 10.11809/bqzbgcxb2019.07.016
    [9] Meir Y, Jerby E. Thermite powder ignition by localized microwaves[J]. Combustion and Flame, 2012, 159(7): 2474-2479. doi: 10.1016/j.combustflame.2012.02.015
    [10] Alibay Z, Kline D J, Rehwoldt M C, et al. Mechanism of microwave-initiated ignition of sensitized energetic nanocomposites[J]. Chemical Engineering Journal, 2021, 415: 128657. doi: 10.1016/j.cej.2021.128657
    [11] Kline D J, Rehwoldt M C, Turner C J, et al. Spatially focused microwave ignition of metallized energetic materials[J]. Journal of Applied Physics, 2020, 127: 055901. doi: 10.1063/1.5134089
    [12] Barkley S J, Lawrence A R, Zohair M, et al. Smart electromagnetic thermites: GO/rGO nanoscale thermite composites with thermally switchable microwave ignitability[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 39678-39688.
    [13] Cheng Jian, Zhang Zehua, Li Fuwei, et al. Microwave ignition characteristics and distinction of typical nanothermites under different electromagnetic radiation[J]. Combustion and Flame, 2024, 260: 113217. doi: 10.1016/j.combustflame.2023.113217
    [14] Tang Kui, Chen Xiaoyuan, Tang Zhenhua, et al. Ignition performance and mechanism of Ti/CuFe2O4 composites with high microwave sensitivity[J]. Ceramics International, 2024, 50(17): 29256-29267. doi: 10.1016/j.ceramint.2024.05.221
    [15] Cheng Jian, Zhang Zehua, Wang Yueting, et al. Doping of Al/CuO with microwave absorbing Ti3C2 MXene for improved ignition and combustion performance[J]. Chemical Engineering Journal, 2023, 451: 138375. doi: 10.1016/j.cej.2022.138375
    [16] 岳雅楠. 微波等离子体点火研究[D]. 成都: 电子科技大学, 2020

    Yue Ya’nan. Research on microwave plasma ignition[D]. Chengdu: University of Electronic Science and Technology of China, 2020
    [17] 郑良岑. 微波多点点火研究[D]. 成都: 电子科技大学, 2022

    Zheng Liangcen. Research on multipoint ignition by microwave[D]. Chengdu: University of Electronic Science and Technology of China, 2022
    [18] 涂兆正. 基于同轴谐振腔的微波点火技术研究[D]. 成都: 电子科技大学, 2022

    Tu Zhaozheng. Research on microwave ignition technology based on coaxial resonator[D]. Chengdu: University of Electronic Science and Technology of China, 2022
    [19] Pozar D M. 微波工程[M]. 2版. 谭云华, 译. 北京: 电子工业出版社, 2019: 217-249

    Pozar D M. Microwave engineering[M]. 2nd ed. Tan Yunhua, trans. Beijing: Publishing House of Electronics Industry, 2019: 217-249
    [20] 吴明英, 毛秀华. 微波技术[M]. 西安: 西北电讯工程学院出版社, 1985: 193-194

    Wu Mingying, Mao Xiuhua. Microwave technology[M]. Xi’an: Northwest Telecommunication Engineering College Press, 1985: 193-194
    [21] 卢言. 小型化铷原子频标中微波谐振腔的研究与设计[D]. 兰州: 兰州大学, 2021

    Lu Yan. Research and design of the microwave cavity in rubidium atomic frequency standard for miniaturization[D]. Lanzhou: Lanzhou University, 2021
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  12
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-21
  • 修回日期:  2025-05-26
  • 录用日期:  2025-04-26
  • 网络出版日期:  2025-06-21

目录

    /

    返回文章
    返回