A miniaturized inverted-F electromagnetic protective antenna based on U-shaped protective structure
-
摘要: 提出了一种小型化平面倒F电磁防护天线,通过在平面倒F天线上加载U形防护结构,实现了天线在正常工作状态与电磁防护状态间的自适应切换。通过在平面倒F天线上加载U形防护结构,并将该结构通过PIN二极管与天线相连接,在正常工作模式下,当接收信号功率低于阈值时,PIN二极管处于截止状态,U形防护结构不影响天线正常辐射特性,当遭遇高功率微波攻击时,U形防护结构中的PIN二极管两端会感应产生较大的感应电场,使PIN二极管迅速导通形成低阻抗通路,此时U形结构与馈线构成闭合回路,阻止高功率微波通过天线进入后端电子设备,从而实现电磁防护。通过优化U形结构的几何参数与二极管加载数量,使其在保持小型化优势的同时,具备良好辐射特性和防护性能。实测结果表明,天线具有17.2%的相对带宽,在1.57 GHz中心频点处增益达到2.36 dBi。仿真结果表明,该设计在电磁防护状态下能实现16.4 dB的防护水平,天线辐射体电尺寸仅为0.25λ×0.06λ(λ为波长),实现了电磁防护天线的小型化设计。Abstract: In this paper, a miniaturized Planar Inverted-F Electromagnetic Protective Antenna is proposed, which achieves adaptive switching between the normal operation mode and the electromagnetic protection mode by loading a U-shaped protective structure on the planar inverted-F antenna. The U-shaped structure is connected to the antenna feed line via PIN diodes. Under normal operation, when the received signal power is below the threshold, the PIN diodes remain in the cutoff state, allowing the antenna to maintain its radiation characteristics without interference from the U-shaped structure. When under high-power microwave attacks, a strong induced electric field is generated across the PIN diodes in the U-shaped structure, causing them to rapidly switch to achieve a low-impedance conduction state. At this point, the U-shaped structure forms a closed loop with the feed line, effectively preventing high-power microwave signals from entering the backend electronic equipment, thereby achieving electromagnetic protection. By optimizing the geometric parameters of the U-shaped structure and the number of loaded diodes, the design maintains its compact size while delivering excellent radiation performance and protection capability. Measurement results show that the antenna achieves a relative bandwidth of 17.2%, with a gain of 2.36 dBi at the center frequency of 1.57 GHz. Simulation results demonstrate a protection level of 16.4 dB in the electromagnetic protection state. The radiator’s electrical dimension is only 0.25λ×0.06λ, realizing a miniaturized design for the electromagnetic protective antenna.
-
表 1 天线结构参数表
Table 1. Antenna structure parameter
(mm) L0 L1 L2 L3 L4 R Lu W0 W1 W2 Wu h 98.1 46.8 8.8 2.0 1.5 0.8 15.0 65.4 2.0 1.0 6.4 0.508 -
[1] 毋召锋, 徐延林, 刘培国, 等. 电磁防护技术发展综述与展望[J]. 强激光与粒子束, 2024, 36:043001 doi: 10.11884/HPLPB202436.230375Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. Review and prospect of electromagnetic protection technology development[J]. High Power Laser and Particle Beams, 2024, 36: 043001 doi: 10.11884/HPLPB202436.230375 [2] 陆尚雨. 基于能量选择表面的强电磁环境防护技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2022Lu Shangyu. Research on strong electromagnetic environment protection technology based on energy selective surface[D]. Harbin: Harbin Institute of Technology, 2022 [3] 胡晓, 邱扬, 田锦. 车载单极天线的电磁脉冲响应特性[J]. 强激光与粒子束, 2018, 30:033201 doi: 10.11884/HPLPB201830.170177Hu Xiao, Qiu Yang, Tian Jin. Response characteristics of vehicle monopole antenna exposed to electromagnetic pulse[J]. High Power Laser and Particle Beams, 2018, 30: 033201 doi: 10.11884/HPLPB201830.170177 [4] 杨成, 刘培国, 刘继斌, 等. 能量选择表面的瞬态响应[J]. 强激光与粒子束, 2013, 25(4):1045-1049 doi: 10.3788/HPLPB20132504.1045Yang Cheng, Liu Peiguo, Liu Jibin, et al. Transient response of energy selective surface[J]. High Power Laser and Particle Beams, 2013, 25(4): 1045-1049 doi: 10.3788/HPLPB20132504.1045 [5] 刘培国, 万双林, 李高升, 等. 一种电磁能量选择表面: 101754668A[P]. 2010-06-23Liu Peiguo, Wan Shuanglin, Li Gaosheng, et al. Electromagnetic energy selection surface: 101754668A[P]. 2010-06-23 [6] 吴欢成, 胡进光, 钟龙权, 等. 电磁能量选择表面的场路协同仿真与实验研究[J]. 强激光与粒子束, 2017, 29:093203 doi: 10.11884/HPLPB201729.170088Wu Huancheng, Hu Jinguang, Zhong Longquan, et al. Field-circuit co-simulation and experiment of electromagnetic energy selective surface[J]. High Power Laser and Particle Beams, 2017, 29: 093203 doi: 10.11884/HPLPB201729.170088 [7] Yang Cheng, Liu Peiguo, Huang Xianjun. A novel method of energy selective surface for adaptive HPM/EMP protection[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 112-115. doi: 10.1109/LAWP.2013.2243105 [8] Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. An ultra-broadband energy selective surface design method: from filter circuits to metamaterials[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(7): 5865-5873. doi: 10.1109/TAP.2023.3276447 [9] 王冠皓. 机载电磁能量选择表面设计与实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2021Wang Guanhao. Design and experimental study of airborne electromagnetic energy selective surface[D]. Harbin: Harbin Institute of Technology, 2021 [10] Chen Qi, Cheng Yanqing, Min Weitong, et al. A composite energy-selective surface based on diode-induced VO2 conduction for the applications of adaptive electromagnetic protection[J]. Microwave and Optical Technology Letters, 2024, 66: e33895. doi: 10.1002/mop.33895 [11] Zhou Lin, Shen Zhongxiang. 3-D absorptive energy-selective structures[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5664-5672. doi: 10.1109/TAP.2021.3061097 [12] Wang Meini, Tang Min, Zhang Haochi, et al. Energy selective antenna: concept, design, and experiment[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(2): 539-545. doi: 10.1109/TEMC.2023.3237689 [13] Fang Jiarui, Wu Qi, Su Donglin. An energy selective antenna based on the folded dipole structure and PIN diodes[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(6): 2006-2014. doi: 10.1109/TEMC.2023.3319994 [14] Zha Song, Qu Zhuang, Zhang Jihong, et al. A gain-reconfigurable reflector antenna with surface-mounted field-induced artificial magnetic conductor for adaptive HIRF prevention[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(9): 7252-7260. doi: 10.1109/TAP.2024.3434371 [15] Wang Zhao, Liu Yingli, Dong Yuandan. Novel miniaturized circularly polarized inverted-f antenna with planar configuration[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(3): 1005-1009. doi: 10.1109/LAWP.2023.3341843 [16] Yang Silei, Geng Junping, Wang Kun, et al. A novel compact wideband planar inverted-F fishbone antenna with load-bearing capacity and its application in CP arrays[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(4): 3162-3174. doi: 10.1109/TAP.2024.3368287 [17] Hu Ning, Zhao Yuting, Zhang Jihong, et al. High-performance energy selective surface based on equivalent circuit design approach[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4526-4538. doi: 10.1109/TAP.2021.3137293 [18] 王跃. 小型化宽频带平面倒F天线的研究与设计[D]. 武汉: 华中师范大学, 2013Wang Yue. Research and design for the miniaturization and broadband of planar inverted-F antenna[D]. Wuhan: Central China Normal University, 2013 -