留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于U形防护结构的小型化倒F电磁防护天线

刘伦屹 张庆 张束 杨峻一 刘良 熊泉杰 陈琦 李少甫

刘伦屹, 张庆, 张束, 等. 基于U形防护结构的小型化倒F电磁防护天线[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250032
引用本文: 刘伦屹, 张庆, 张束, 等. 基于U形防护结构的小型化倒F电磁防护天线[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250032
Liu Lunyi, Zhang Qing, Zhang Shu, et al. A miniaturized inverted-F electromagnetic protective antenna based on U-shaped protective structure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250032
Citation: Liu Lunyi, Zhang Qing, Zhang Shu, et al. A miniaturized inverted-F electromagnetic protective antenna based on U-shaped protective structure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250032

基于U形防护结构的小型化倒F电磁防护天线

doi: 10.11884/HPLPB202537.250032
基金项目: 四川省科技计划项目(2025YFHZ0029); 西南科技大学2024年研究生创新基金星火计划项目(24ycx2025)
详细信息
    作者简介:

    刘伦屹,245355146@qq.com

    通讯作者:

    陈 琦,qchen1103@163.com

  • 中图分类号: TN820.1

A miniaturized inverted-F electromagnetic protective antenna based on U-shaped protective structure

  • 摘要: 提出了一种小型化平面倒F电磁防护天线,通过在平面倒F天线上加载U形防护结构,实现了天线在正常工作状态与电磁防护状态间的自适应切换。通过在平面倒F天线上加载U形防护结构,并将该结构通过PIN二极管与天线相连接,在正常工作模式下,当接收信号功率低于阈值时,PIN二极管处于截止状态,U形防护结构不影响天线正常辐射特性,当遭遇高功率微波攻击时,U形防护结构中的PIN二极管两端会感应产生较大的感应电场,使PIN二极管迅速导通形成低阻抗通路,此时U形结构与馈线构成闭合回路,阻止高功率微波通过天线进入后端电子设备,从而实现电磁防护。通过优化U形结构的几何参数与二极管加载数量,使其在保持小型化优势的同时,具备良好辐射特性和防护性能。实测结果表明,天线具有17.2%的相对带宽,在1.57 GHz中心频点处增益达到2.36 dBi。仿真结果表明,该设计在电磁防护状态下能实现16.4 dB的防护水平,天线辐射体电尺寸仅为0.25λ×0.06λλ为波长),实现了电磁防护天线的小型化设计。
  • 图  1  PIFEPA在低功率和高功率信号入射下的示意图

    Figure  1.  Schematic models of PIFEPA at the conditions of low-power and high-power incident waves

    图  2  PIFEPA结构图

    Figure  2.  Structural diagram of PIFEPA

    图  3  PIFA的等效电路模型

    Figure  3.  Equivalent circuit model of PIFA

    图  4  PIFEPA的等效电路模型

    Figure  4.  Equivalent circuit model of PIFEPA

    图  5  PIN二极管的等效电路模型

    Figure  5.  Equivalent circuit model of PIN diode

    图  6  PIFEPA反射系数随通孔数量的变化

    Figure  6.  Variation of reflection coefficients of PIFEPA with the number of vias

    图  7  PIFEPA反射系数随U形结构长度的变化

    Figure  7.  Variation of reflection coefficients of ESA with the U-shape branch length

    图  8  通孔数量为4个、U形结构长度为15 mm时的反射系数模拟结果

    Figure  8.  Simulation result of reflection coefficient with 4 vias and 15 mm U-shaped branch length

    图  9  PIFEPA在二极管导通和截止状态下的仿真辐射方向图

    Figure  9.  Simulated radiation patterns of PIFEPA with diodes on-state and off-state

    图  10  天线样品图

    Figure  10.  Prototype of the antenna

    图  11  测试环境和设备

    Figure  11.  Test environment and equipment

    图  12  天线仿真和测量的反射系数

    Figure  12.  Simulated and measured reflection coefficients

    图  13  PIFEPA的仿真和测量辐射方向图

    Figure  13.  Simulated and measured radiation patterns of PIFEPA

    图  14  PIFEPA的测量接收功率与输入功率的关系

    Figure  14.  Measured received power of the EPA versus the input power

    表  1  天线结构参数表

    Table  1.   Antenna structure parameter (mm)

    L0L1L2L3L4RLuW0W1W2Wuh
    98.146.88.82.01.50.815.065.42.01.06.40.508
    下载: 导出CSV

    表  2  天线性能对比表

    Table  2.   Antenna performance comparison

    reference bandwidth/% radiator electrical dimension protection level/dB actual critical power/dBm
    this article 17.2 0.25λ×0.06λ 16.4 31
    Ref.[12] 3.2 0.31λ×0.27λ 25.0 46
    Ref.[13] 17.5 0.38λ×0.18λ 20.0 26
    下载: 导出CSV
  • [1] 毋召锋, 徐延林, 刘培国, 等. 电磁防护技术发展综述与展望[J]. 强激光与粒子束, 2024, 36:043001 doi: 10.11884/HPLPB202436.230375

    Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. Review and prospect of electromagnetic protection technology development[J]. High Power Laser and Particle Beams, 2024, 36: 043001 doi: 10.11884/HPLPB202436.230375
    [2] 陆尚雨. 基于能量选择表面的强电磁环境防护技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2022

    Lu Shangyu. Research on strong electromagnetic environment protection technology based on energy selective surface[D]. Harbin: Harbin Institute of Technology, 2022
    [3] 胡晓, 邱扬, 田锦. 车载单极天线的电磁脉冲响应特性[J]. 强激光与粒子束, 2018, 30:033201 doi: 10.11884/HPLPB201830.170177

    Hu Xiao, Qiu Yang, Tian Jin. Response characteristics of vehicle monopole antenna exposed to electromagnetic pulse[J]. High Power Laser and Particle Beams, 2018, 30: 033201 doi: 10.11884/HPLPB201830.170177
    [4] 杨成, 刘培国, 刘继斌, 等. 能量选择表面的瞬态响应[J]. 强激光与粒子束, 2013, 25(4):1045-1049 doi: 10.3788/HPLPB20132504.1045

    Yang Cheng, Liu Peiguo, Liu Jibin, et al. Transient response of energy selective surface[J]. High Power Laser and Particle Beams, 2013, 25(4): 1045-1049 doi: 10.3788/HPLPB20132504.1045
    [5] 刘培国, 万双林, 李高升, 等. 一种电磁能量选择表面: 101754668A[P]. 2010-06-23

    Liu Peiguo, Wan Shuanglin, Li Gaosheng, et al. Electromagnetic energy selection surface: 101754668A[P]. 2010-06-23
    [6] 吴欢成, 胡进光, 钟龙权, 等. 电磁能量选择表面的场路协同仿真与实验研究[J]. 强激光与粒子束, 2017, 29:093203 doi: 10.11884/HPLPB201729.170088

    Wu Huancheng, Hu Jinguang, Zhong Longquan, et al. Field-circuit co-simulation and experiment of electromagnetic energy selective surface[J]. High Power Laser and Particle Beams, 2017, 29: 093203 doi: 10.11884/HPLPB201729.170088
    [7] Yang Cheng, Liu Peiguo, Huang Xianjun. A novel method of energy selective surface for adaptive HPM/EMP protection[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 112-115. doi: 10.1109/LAWP.2013.2243105
    [8] Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. An ultra-broadband energy selective surface design method: from filter circuits to metamaterials[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(7): 5865-5873. doi: 10.1109/TAP.2023.3276447
    [9] 王冠皓. 机载电磁能量选择表面设计与实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2021

    Wang Guanhao. Design and experimental study of airborne electromagnetic energy selective surface[D]. Harbin: Harbin Institute of Technology, 2021
    [10] Chen Qi, Cheng Yanqing, Min Weitong, et al. A composite energy-selective surface based on diode-induced VO2 conduction for the applications of adaptive electromagnetic protection[J]. Microwave and Optical Technology Letters, 2024, 66: e33895. doi: 10.1002/mop.33895
    [11] Zhou Lin, Shen Zhongxiang. 3-D absorptive energy-selective structures[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5664-5672. doi: 10.1109/TAP.2021.3061097
    [12] Wang Meini, Tang Min, Zhang Haochi, et al. Energy selective antenna: concept, design, and experiment[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(2): 539-545. doi: 10.1109/TEMC.2023.3237689
    [13] Fang Jiarui, Wu Qi, Su Donglin. An energy selective antenna based on the folded dipole structure and PIN diodes[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(6): 2006-2014. doi: 10.1109/TEMC.2023.3319994
    [14] Zha Song, Qu Zhuang, Zhang Jihong, et al. A gain-reconfigurable reflector antenna with surface-mounted field-induced artificial magnetic conductor for adaptive HIRF prevention[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(9): 7252-7260. doi: 10.1109/TAP.2024.3434371
    [15] Wang Zhao, Liu Yingli, Dong Yuandan. Novel miniaturized circularly polarized inverted-f antenna with planar configuration[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(3): 1005-1009. doi: 10.1109/LAWP.2023.3341843
    [16] Yang Silei, Geng Junping, Wang Kun, et al. A novel compact wideband planar inverted-F fishbone antenna with load-bearing capacity and its application in CP arrays[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(4): 3162-3174. doi: 10.1109/TAP.2024.3368287
    [17] Hu Ning, Zhao Yuting, Zhang Jihong, et al. High-performance energy selective surface based on equivalent circuit design approach[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4526-4538. doi: 10.1109/TAP.2021.3137293
    [18] 王跃. 小型化宽频带平面倒F天线的研究与设计[D]. 武汉: 华中师范大学, 2013

    Wang Yue. Research and design for the miniaturization and broadband of planar inverted-F antenna[D]. Wuhan: Central China Normal University, 2013
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  23
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-21
  • 修回日期:  2025-04-10
  • 录用日期:  2025-04-10
  • 网络出版日期:  2025-05-29

目录

    /

    返回文章
    返回