[1] |
Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond x rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
|
[2] |
鲁瑜, 张昊, 张亮琪, 等. 基于激光等离子体的X/γ辐射研究进展[J]. 强激光与粒子束, 2023, 35:012006Lu Yu, Zhang Hao, Zhang Liangqi, et al. Research progress of X/γ photon emission in laser-plasma interaction[J]. High Power Laser and Particle Beams, 2023, 35: 012006
|
[3] |
Mahieu B, Jourdain N, Ta Phuoc K, et al. Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source[J]. Nature Communications, 2018, 9: 3276. doi: 10.1038/s41467-018-05791-4
|
[4] |
Ping Y, Hicks D G, Yaakobi B, et al. A platform for x-ray absorption fine structure study of dynamically compressed materials above 1 mbar[J]. Review of Scientific Instruments, 2013, 84: 123105. doi: 10.1063/1.4841935
|
[5] |
Ravasio A, Koenig M, Le Pape S, et al. Hard x-ray radiography for density measurement in shock compressed matter[J]. Physics of Plasmas, 2008, 15: 060701. doi: 10.1063/1.2928156
|
[6] |
Wood J C, Chapman D J, Poder K, et al. Ultrafast imaging of laser driven shock waves using betatron x-rays from a laser wakefield accelerator[J]. Scientific Reports, 2018, 8: 11010. doi: 10.1038/s41598-018-29347-0
|
[7] |
Döpp A, Hehn L, Götzfried J, et al. Quick x-ray microtomography using a laser-driven betatron source[J]. Optica, 2018, 5(2): 199-203. doi: 10.1364/OPTICA.5.000199
|
[8] |
Zhang Z M, Zhang B, Hong W, et al. Enhanced x-rays from resonant betatron oscillations in laser Wakefield with external wigglers[J]. Plasma Physics and Controlled Fusion, 2016, 58: 105009. doi: 10.1088/0741-3335/58/10/105009
|
[9] |
Ferri J, Corde S, Döpp A, et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons[J]. Physical Review Letters, 2018, 120: 254802. doi: 10.1103/PhysRevLett.120.254802
|
[10] |
Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81(3): 1229-1285. doi: 10.1103/RevModPhys.81.1229
|
[11] |
陈民, 刘峰, 李博原, 等. 激光等离子体尾波加速器的发展和展望[J]. 强激光与粒子束, 2020, 32:092001Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001
|
[12] |
Aniculaesei C, Ha T, Yoffe S, et al. The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator[J]. Matter and Radiation at Extremes, 2024, 9: 014001. doi: 10.1063/5.0161687
|
[13] |
Götzfried J, Döpp A, Gilljohann M F, et al. Physics of high-charge electron beams in laser-plasma wakefields[J]. Physical Review X, 2020, 10: 041015.
|
[14] |
Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Physics, 2011, 7(11): 867-871. doi: 10.1038/nphys2090
|
[15] |
Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
|
[16] |
冷雨欣. 上海超强超短激光实验装置[J]. 中国激光, 2019, 46:0100001 doi: 10.3788/CJL201946.0100001Leng Yuxin. Shanghai superintense ultrafast laser facility[J]. Chinese Journal of Lasers, 2019, 46: 0100001 doi: 10.3788/CJL201946.0100001
|
[17] |
Zeng Xiaoming, Zhou Kainan, Zuo Yanlei, et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification[J]. Optics Letters, 2017, 42(10): 2014-2017. doi: 10.1364/OL.42.002014
|
[18] |
Cikhardt J, Gyrdymov M, Zähter S, et al. Characterization of bright betatron radiation generated by direct laser acceleration of electrons in plasma of near critical density[J]. Matter and Radiation at Extremes, 2024, 9: 027201. doi: 10.1063/5.0181119
|
[19] |
Tan J H, Li Y F, Li D Z, et al. Observation of high efficiency Betatron radiation from femtosecond petawatt laser irradiated near critical plasmas[DB/OL]. arXiv preprint arXiv: 2109.12467, 2021.
|
[20] |
Zhang Z M, Wu Y C, Zhang X H, et al. Inhibition of electron refluxing in laser-gas interactions for enhanced positron generation[J]. Plasma Physics and Controlled Fusion, 2022, 64: 095015. doi: 10.1088/1361-6587/ac7ee9
|
[21] |
Ammosov M V, Delone N B, Krainov V P. Tunnel ionization of complex atoms and atomic ions in electromagnetic field[C]//Proceedings of SPIE 0664, High Intensity Laser Processes. 1986: 138-141.
|
[22] |
Chen Min, Pukhov A, Yu Tongpu, et al. Radiation reaction effects on ion acceleration in laser foil interaction[J]. Plasma Physics and Controlled Fusion, 2011, 53: 014004. doi: 10.1088/0741-3335/53/1/014004
|
[23] |
Gahn C, Tsakiris G D, Pukhov A, et al. Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels[J]. Physical Review Letters, 1999, 83(23): 4772-4775. doi: 10.1103/PhysRevLett.83.4772
|
[24] |
Pukhov A, Sheng Z M, Meyer-ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Physics of Plasmas, 1999, 6(7): 2847-2854. doi: 10.1063/1.873242
|
[25] |
Lu W, Tzoufras M, Joshi C, et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Physical Review Special Topics-Accelerators and Beams, 2007, 10: 061301. doi: 10.1103/PhysRevSTAB.10.061301
|
[26] |
Esarey E, Shadwick B A, Catravas P, et al. Synchrotron radiation from electron beams in plasma-focusing channels[J]. Physical Review E, 2002, 65: 056505. doi: 10.1103/PhysRevE.65.056505
|