留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于硬X射线光谱测量的罗斯对滤片堆栈混合谱仪

王子昌 邵烁婷 袁红军 李天贻 刘雨熙 刘会亚 王秋平 唐桧波 况龙钰 胡广月

王子昌, 邵烁婷, 袁红军, 等. 用于硬X射线光谱测量的罗斯对滤片堆栈混合谱仪[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250034
引用本文: 王子昌, 邵烁婷, 袁红军, 等. 用于硬X射线光谱测量的罗斯对滤片堆栈混合谱仪[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250034
Wang Zichang, Shao Shuoting, Yuan Hongjun, et al. Ross pair-filters stack mixed spectrometer for hard x-ray detection[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250034
Citation: Wang Zichang, Shao Shuoting, Yuan Hongjun, et al. Ross pair-filters stack mixed spectrometer for hard x-ray detection[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250034

用于硬X射线光谱测量的罗斯对滤片堆栈混合谱仪

doi: 10.11884/HPLPB202537.250034
基金项目: 国家自然科学基金项目(批准号:12175230, 11775223, 12205298)、中国科学院非共识和颠覆性项目(批准号:CX2140000042)和统筹推进世界一流大学和一流学科建设专项资金资助项目(批准号:YD2140002006)资助的课题
详细信息

Ross pair-filters stack mixed spectrometer for hard x-ray detection

  • 摘要: 罗斯对和滤片堆栈谱仪常被用于探测硬X射线光谱,但滤片堆栈谱仪的结果对预估谱形状十分敏感,而罗斯对只能给出离散的分立谱。发展了一种罗斯对滤片堆栈混合谱仪,结合了传统滤片堆栈谱仪和罗斯对的优点,将传统堆栈谱仪的每一层滤片都换成一对滤片构成的罗斯对,这样可以利用罗斯对测到的离散分立光谱作为预估谱,输入到堆栈通道的解谱程序中求解出整个X射线光谱。数值实验和使用X光机进行的测试都显示,这种罗斯对滤片堆栈混合谱仪相较于传统滤片堆栈谱仪能给出更准确的光谱结构,其紧凑轻便的优势在硬X射线光谱测量中有广泛的应用前景。
  • 图  1  罗斯对滤片堆栈混合谱仪结构示意图

    Figure  1.  A diagram of Ross pair-filters stack mixed spectrometer

    图  2  传统罗斯对的结构示意图及其响应函数

    Figure  2.  A diagram of Ross pair spectrometer and its response function

    图  3  罗斯对滤片堆栈谱仪各个通道的响应函数

    Figure  3.  Response functions of each channel in Ross pair - filter stack mixed spectrometer

    图  4  钨X光机在100 kV电压下的光谱

    Figure  4.  Spectrum of tungsten X-ray tube at 100 kV voltage

    图  5  低能X光测谱数值实验中各通道每层IP上的能量沉积

    Figure  5.  Energy deposition on each IP layer of each channel in low energy x-ray spectral detection

    图  6  低能X光测谱数值实验中由罗斯对通道给出的预估谱

    Figure  6.  The pre-estimate spectrum obtained from Ross pair channels for low energy x-ray spectral detection

    图  7  低能X光测谱数值实验中的解谱结果

    Figure  7.  The results of low energy X-ray spectral detection

    图  8  高能X光测谱数值实验的堆栈通道响应函数

    Figure  8.  Response function of filter stack channel for high energy x-ray spectral detection

    图  9  激光聚变靶丸康普顿照相光源的光谱

    Figure  9.  Spectrum of Compton radiography light source

    图  10  高能X光测谱数值实验中各通道每层IP上的能量沉积

    Figure  10.  Energy deposition on each IP layer of each channel in numerical experiment of high energy x-ray spectral detection

    图  11  高能X光测谱数值实验中罗斯对通道给出的预估谱

    Figure  11.  The pre-estimate spectrum for high energy x-ray spectral detection

    图  12  高能X光测谱数值实验中的解谱结果

    Figure  12.  The results of high energy x-ray spectral detection

    图  13  罗斯对滤片堆栈混合谱仪和传统罗斯对的灰度图像以及对应的PSL值

    Figure  13.  The grayscale images and corresponding PSL values obtained by using Ross pair - stack filter mixed spectrometer and traditional Ross pair

    图  14  不同预估计谱配合不同通道的数据的解谱结果

    Figure  14.  Results of different estimated spectra combined with data from different channels

    表  1  罗斯对滤片堆栈混合谱仪各通道滤片材料和厚度

    Table  1.   Filter materials and thickness of Ross pair- filter stack mixed spectrometer

    No. material of channel
    A filters
    thickness of channel
    A filters/μm
    material of channel
    B filters
    thickness of channel
    B filters/μm
    material of channel
    C filters
    thickness of channel
    C filters/μm
    1 V 20.99 Ti & Al 29.49 & 20 Al 50
    2 Nb 19.93 Cu & Al 46.72 & 20 Ti 100
    3 Sn 41 Nb & Al 53.37 & 80 Ti 100
    4 Gd 51.20 Sn & Al 94.04 & 276.49 Cu 100
    5 Ta 34.96 Gd & Al 102.4 & 355.66 Mo 100
    6 Pb 285.52 Ta & Cu 246.48 & 93.44 Ag 100
    下载: 导出CSV

    表  2  低能X光测谱数值实验混合谱仪和传统堆栈谱仪的测谱准确度

    Table  2.   Spectral accuracy for low energy x-ray spectral detection

    pre-estimate spectrum Ross pair- filters stack mixed spectrometer traditional filters stack 1 traditional filters stack 2
    Spectral accuracy
    (sum of squared differences)
    9.0059e+10 1.2749e+11 1.1709e+11
    下载: 导出CSV

    表  3  高能X光测谱数值实验的滤片堆栈通道的滤片材料和厚度

    Table  3.   Filter material and thickness of filters stacked channel for high energy x-ray spectral detection

    No. material of filters thickness of filters /μm
    1 Al 50
    2 Ti 100
    3 Ti 100
    4 Cu 100
    5 Mo 100
    6 Ag 100
    7 Sn 1000
    8 Sn 3000
    9 Ta 2000
    10 Ta 4000
    11 Ta 6000
    下载: 导出CSV

    表  4  高能X光测谱数值实验中混合谱仪和传统堆栈谱仪的测谱准确度

    Table  4.   Spectral accuracy for high energy x-ray spectral detection

    pre-estimate spectrum Ross pair- filters stack mixed spectrometer traditional filters stack 1 traditional filters stack 2
    spectral accuracy
    (sum of squared differences)
    3.5253e+9 3.7512e+9 3.7582e+9
    下载: 导出CSV

    表  5  在钨X光机上的实验中混合谱仪和传统堆栈谱仪的测谱准确度

    Table  5.   Spectral accuracy for Tungsten X-ray tube spectral detection

    pre-estimate
    spectrum
    Ross pair- filters stack
    mixed spectrometer
    traditional Ross
    pair
    traditional filters
    stack 1
    traditional filters
    stack 2
    spectral accuracy
    (sum of squared differences)
    1.1267e+11 1.0822e+11 1.4294e+11 1.6062e+11
    下载: 导出CSV
  • [1] Hurricane O A, Patel P K, Betti R, et al. Physics principles of inertial confinement fusion and U. S. program overview[J]. Reviews of Modern Physics, 2023, 95: 025005. doi: 10.1103/RevModPhys.95.025005
    [2] Dimitri B. Inertial confinement fusion: recent results and perspectives[J]. EPJ Web of Conferences, 2024, 310: 00013. doi: 10.1051/epjconf/202431000013
    [3] Park H S, Maddox B R, Giraldez E, et al. High-resolution 17-75 keV backlighters for high energy density experiments[J]. Physics of Plasmas, 2008, 15: 072705. doi: 10.1063/1.2957918
    [4] Yang Tao, Hu Guangyue, Yuan Peng, et al. Abnormal spectral distortion of a silicon sensor-based single photon counting charge coupled device (PIXIS-XB: 1300R) in detecting laser plasma x-ray source of 20-100 keV[J]. Plasma Physics and Controlled Fusion, 2019, 61: 095008. doi: 10.1088/1361-6587/ab3310
    [5] 张双根, 黄文忠, 谷渝秋, 等. 用于激光等离子体中X射线测量的单光子计数型CCD的标定[J]. 强激光与粒子束, 2006, 18(1):77-80

    Zhang Shuanggen, Huang Wenzhong, Gu Yuqiu, et al. Calibration of single-photon counting X-ray CCD[J]. High Power Laser and Particle Beams, 2006, 18(1): 77-80
    [6] 熊勇, 黄文忠, 张双根, 等. 光子计数型CCD测量激光等离子体X射线[J]. 强激光与粒子束, 2007, 19(2):271-273

    Xiong Yong, Huang Wenzhong, Zhang Shuanggen, et al. Measurement of X ray in interaction of laser plasmas by photon counting CCD[J]. High Power Laser and Particle Beams, 2007, 19(2): 271-273
    [7] 闫永宏, 赵宗清, 吴玉迟, 等. 单光子计数型CCD的蒙特卡罗模拟[J]. 强激光与粒子束, 2013, 25(1):211-214 doi: 10.3788/HPLPB20132501.0211

    Yan Yonghong, Zhao Zongqing, Wu Yuchi, et al. Monte Carlo simulation on single photon counting charge coupled device[J]. High Power Laser and Particle Beams, 2013, 25(1): 211-214 doi: 10.3788/HPLPB20132501.0211
    [8] Yan Yonghong, Wei Lai, Wen Xianlun, et al. Calibration and Monte Carlo simulation of a single-photon counting charge-coupled device for single-shot X-ray spectrum measurements[J]. Chinese Optics Letters, 2013, 11: 110401. doi: 10.3788/col201311.110401
    [9] Hudson L T, Henins A, Deslattes R D, et al. A high-energy x-ray spectrometer diagnostic for the OMEGA laser[J]. Review of Scientific Instruments, 2002, 73(6): 2270-2275. doi: 10.1063/1.1476715
    [10] Yu Minghai, Hu Guangyue, An Ning, et al. Hard x-ray transmission curved crystal spectrometers (10-100 keV) for laser fusion experiments at the ShenGuang-III laser facility[J]. High Power Laser Science and Engineering, 2016, 4: e2. doi: 10.1017/hpl.2015.36
    [11] Chen C D, King J A, Key M H, et al. A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters[J]. Review of Scientific Instruments, 2008, 79: 10E305. doi: 10.1063/1.2964231
    [12] 于明海, 谭放, 闫永宏, 等. 用于激光产生的高能X射线源能谱诊断的滤片堆栈谱仪的研制[J]. 原子能科学技术, 2017, 51(6):1090-1095 doi: 10.7538/yzk.2017.51.06.1090

    Yu Minghai, Tan Fang, Yan YongHong, et al. Development of filter stack spectrometer for spectrum measurement of X ray generated by laser[J]. Atomic Energy Science and Technology, 2017, 51(6): 1090-1095 doi: 10.7538/yzk.2017.51.06.1090
    [13] Maddox B R, Park H S, Remington B A, et al. High-energy x-ray backlighter spectrum measurements using calibrated image plates[J]. Review of Scientific Instruments, 2011, 82: 023111. doi: 10.1063/1.3531979
    [14] Wen JiaXing, Ma Ge, Yu Minghai, et al. Optimized online filter stack spectrometer for ultrashort X-ray pulses[J]. Nuclear Science and Techniques, 2024, 35: 48. doi: 10.1007/s41365-024-01391-8
    [15] Song Honghu, Wu Zhen, Zhang Hui, et al. A simulation optimization design of the filter stack spectrometer for laser-plasma interaction experiment[J]. Journal of Instrumentation, 2023, 18: P03012. doi: 10.1088/1748-0221/18/03/P03012
    [16] Meadowcroft A L, Bentley C D, Stott E N. Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics[J]. Review of Scientific Instruments, 2008, 79: 113102. doi: 10.1063/1.3013123
    [17] Alvarez M A, Wolfe B T, Wong C S, et al. Machine learning based unfolding of x-ray spectra from filter stack spectrometer data[J]. Review of Scientific Instruments, 2024, 95: 085101. doi: 10.1063/5.0216759
    [18] 肖庭延, 于慎根, 王彦飞. 反问题的数值解法[M]. 北京: 科学出版社, 2003

    Xiao Tingyan, Yu Shengen, Wang Yanfei, et al. Numerical Methods for Inverse Problems[M]. Beijing: Science Press, 2003
    [19] Matzke M. Unfolding of particle spectra[C]//Proceedings of SPIE 2867, International Conference Neutrons in Research and Industry. 1997: 598-607.
    [20] Reginatto M. Overview of spectral unfolding techniques and uncertainty estimation[J]. Radiation Measurements, 2010, 45(10): 1323-1329. doi: 10.1016/j.radmeas.2010.06.016
    [21] Agostinelli S, Allison J, Amako K, et al. GEANT4—a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250-303.
    [22] Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 270-278. doi: 10.1109/TNS.2006.869826
    [23] Allison J, Amako K, Apostolakis J, et al. Recent developments in GEANT4[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 835: 186-225.
    [24] del Río M S, Dejus R J. Status of XOP: an x-ray optics software toolkit[C]//Proceedings of SPIE 5536, Advances in Computational Methods for X-Ray and Neutron Optics. 2004: 171-174.
    [25] del Río M S, Dejus R J. XOP 2.1—a new version of the x-ray optics software toolkit[J]. AIP Conference Proceedings, 2004, 705(1): 784-787.
    [26] Boone J M, Seibert J A. Accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV[J]. Medical Physics, 1997, 24(11): 1661-1670. doi: 10.1118/1.597953
    [27] Tommasini R, Park H S, Patel P, et al. Development of Compton radiography using high-Z backlighters produced by ultra-intense lasers[J]. AIP Conference Proceedings, 2007, 926(1): 248-258.
    [28] Malka G, Miquel J L. Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target[J]. Physical Review Letters, 1996, 77(1): 75-78. doi: 10.1103/PhysRevLett.77.75
    [29] Haines M G, Wei M S, Beg F N, et al. Hot-electron temperature and laser-light absorption in fast ignition[J]. Physical Review Letters, 2009, 102: 045008. doi: 10.1103/PhysRevLett.102.045008
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  7
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-25
  • 修回日期:  2025-06-17
  • 录用日期:  2025-06-04
  • 网络出版日期:  2025-07-02

目录

    /

    返回文章
    返回