留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于C波段光阴极微波电子枪的发射度测量仪设计

陈伟文 姜世民 刘仁洪 杨涛 黄蔚玲 杨仁俊 李晓

陈伟文, 姜世民, 刘仁洪, 等. 用于C波段光阴极微波电子枪的发射度测量仪设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250038
引用本文: 陈伟文, 姜世民, 刘仁洪, 等. 用于C波段光阴极微波电子枪的发射度测量仪设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250038
Chen Weiwen, Jiang Shimin, Liu Renhong, et al. Design of an emittance measurement device for the C-band photocathode RF gun[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250038
Citation: Chen Weiwen, Jiang Shimin, Liu Renhong, et al. Design of an emittance measurement device for the C-band photocathode RF gun[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250038

用于C波段光阴极微波电子枪的发射度测量仪设计

doi: 10.11884/HPLPB202537.250038
基金项目: 广东省基础与应用基础研究基金项目(2022A1515140179);中国科学院高能物理研究所基金谢家麟基金项目(E4546JU2)
详细信息
    作者简介:

    陈伟文,chenww@ihep.ac.cn

    通讯作者:

    杨仁俊,yangrenjun@ihep.ac.cn

  • 中图分类号: O572.21

Design of an emittance measurement device for the C-band photocathode RF gun

  • 摘要: 束团电荷量100 pC条件下,C波段光阴极微波电子枪出口的束流归一化发射度预计低于0.2 mm.mrad。为实现对极小束流发射度的准确测量,设计了一套基于单狭缝扫描法的发射度测量仪,并利用数值模拟对发射度仪的狭缝结构和子束团漂移距离等核心参数进行了优化。考虑动态误差的数值模拟表明:采用宽度5 μm、厚度1 mm的狭缝和0.11 m的子束团漂移距离时,95%发射度的测量偏差低于5%。
  • 图  1  C波段光阴极微波电子枪测试平台布局图

    Figure  1.  Layout of the C-band photocathode RF gun test platform

    图  2  采用单狭缝扫描法的发射度仪主要参数

    Figure  2.  The main parameters of the emittancemeter using the single-slit scanning method

    图  3  不同束团电荷量下,狭缝出口处的子束团${R_{sc}}$值评估

    Figure  3.  Assessed ${R_{sc}}$ for the beamlets at the slit exit under different beam charge

    图  4  束团电荷量100 pC时,粒子损失与狭缝宽度和厚度的关系

    Figure  4.  Particle loss versus slit width and thickness for a bunch charge of 100 pC

    图  5  对于理想完全阻挡材料和钨材料靶,下游剖面探测器处的子束团分布

    Figure  5.  Horizontal beamlet distribution at the downstream profile monitor for ideal complete blocking materials and tungsten material targets

    图  6  束团电荷量100 pC时,考虑与不考虑空间电荷力的重建发射度与狭缝宽度的关系

    Figure  6.  Evaluations of the reconstructed emittance as a function of slit width with and without space charge effects for a bunch charge of 100 pC

    图  7  狭缝宽度为10 μm和5 μm时,100%发射度和95%发射度的测量偏差与子束团漂移距离的关系

    Figure  7.  Measurement error of 100% emittance and 95% emittance versus beamlet drift length for the slit widths of 10 μm and 5 μm

    图  8  驱动电机的单向位移精度测量

    Figure  8.  The measured displacement error of the driven motor

    图  9  基于单狭缝扫描法的发射度测量仪结构

    Figure  9.  A schematic layout of the single-slit-scan based emittancemeter

    图  10  采用Sugitoh TS-93022镜头的USAF1951分辨率板成像

    Figure  10.  Image of the USAF1951 resolution board by the Sugitoh TS-93022 len

    图  11  考虑动态误差时,100%发射度和95%发射度测量偏差与子束团漂移距离的关系

    Figure  11.  Measurement errors of 100% emittance and 95% emittance as a function of beamlet drift length in the presence of dynamic errors

    图  12  初始和重建的相空间分布

    Figure  12.  The initial and the reconstructed phase-space distributions

    表  1  C波段光阴极微波电子枪的主要束流参数 (设计值)

    Table  1.   Major beam parameters of the C-band photocathode RF gun (design values)

    Charge (pC) Energy (MeV) $100{\text{%}} {\varepsilon _n}$ (mm·mrad) $95{\text{%}} {\varepsilon _n}$ (mm·mrad)
    100 7.26 0.175 0.111
    300 7.25 0.323 0.215
    500 7.24 0.463 0.304
    下载: 导出CSV

    表  2  多缝法和单缝扫描法在光阴极注入器上的应用[27-33]

    Table  2.   The application of multi-slit and single-slit scan measurement on photoinjectors

    facility name method beam energy /MeV charge/pC slit width/μm Normalize emittance/(mm.mrad)
    SITF Single-slit-scan 7 100 20 0.46
    PITZ Single-slit-scan 4.6 100 10 0.26
    ELBE Single-slit-scan 4.45 100 100 2.84
    DC-SRF-II Single-slit-scan 2.42 100 30 0.54
    ORGAD Multi-slit 6.5 30 40 3
    LEReC Multi-slit 2.6 75 150 1.6
    下载: 导出CSV
  • [1] Emma P, Akre R, Arthur J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4(9): 641-647. doi: 10.1038/nphoton.2010.176
    [2] Vinko S M, Ciricosta O, Cho B I, et al. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser[J]. Nature, 2012, 482(7383): 59-62. doi: 10.1038/nature10746
    [3] Takahashi S, Brunel L C, Edwards D T, et al. Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser[J]. Nature, 2012, 489(7416): 409-413. doi: 10.1038/nature11437
    [4] McSweeney S, Fromme P. Sources of inspiration[J]. Nature, 2014, 505(7485): 620-621. doi: 10.1038/505620a
    [5] Duan S F, Cheng Y, Xia W, et al. Optical manipulation of electronic dimensionality in a quantum material[J]. Nature, 2021, 595(7866): 239-244. doi: 10.1038/s41586-021-03643-8
    [6] Rosenzweig J B, Majernik N, Robles R R, et al. An ultra-compact x-ray free-electron laser[J]. New Journal of Physics, 2020, 22: 093067. doi: 10.1088/1367-2630/abb16c
    [7] Palmer D T, Wang X J, Miller R H, et al. Initial commissioning results of the next generation photoinjector[J]. AIP Conference Proceedings, 1997, 398(1): 695-704.
    [8] Dwersteg B, Flöttmann K, Sekutowicz J, et al. RF gun design for the TESLA VUV free electron laser[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 393(1/3): 93-95.
    [9] Liu Xingguang, Li Xiao, Jiang Shiming, et al. A C-band test platform for the development of RF photocathode and high gradient accelerating structures[C]//Proceedings of the 14th International Particle Accelerator Conference. 2023: 1995-1998.
    [10] Alesini D, Cardelli F, Di Raddo G, et al. Progress on the new high gradient C Band standing wave RF photo-gun[C]//Proceedings of the 14th International Particle Accelerator Conference. 2023: 1374-1377.
    [11] Chen H, Huang W H, Liu X H, et al. Development of a compact C-band photocathode RF gun[C]//Proceedings of the 2nd International Particle Accelerator Conference. 2011: 116-118.
    [12] Taira Y, Kuroda R, Tanaka M, et al. Fabrication and low-power RF test of C-band RF gun[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 331: 27-30.
    [13] Fang Wencheng, Wang Lin, Zhao Zhentang. Conceptual study and design of A C-band photocathode injector[J]. Radiation Detection Technology and Methods, 2019, 3: 39. doi: 10.1007/s41605-019-0117-z
    [14] Liu Xingguang, Jiao Yi, Li Biaobin, et al. Preliminary design of the full energy linac injector for the southern advanced photon source[C]//Proceedings of the 12th International Particle Accelerator Conference. 2021: 1454-1457.
    [15] Liu X, Li X, Jiang S, et al. A C-band test platform for the development of RF photo cathode and high gradient accelerating structures[J]. Journal of Physics: Conference Series, 2024, 2687: 042001. doi: 10.1088/1742-6596/2687/4/042001
    [16] Yan M, Beutner B, Ischebeck R, et al. Comparison of quadrupole scan and multi-screen method for the measurement of projected and slice emittance at the SwissFEL injector test facility[C]//Proceedings of FEL2014. 2014: 941-944.
    [17] Hachmann M, Flöttmann K. Measurement of ultra low transverse emittance at REGAE[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829: 318-320.
    [18] Cutler R I, Owen J, Whittaker J. Performance of wire scanner beam profile monitors to determine the emittance and position of high power CW electron beams of the NBS-Los Alamos Racetrack microtron[C]//Proceedings of PAC 1987. 1987: 625-627.
    [19] Kremers H R, Beijers J P M, Brandenburg S. A pepper-pot emittance meter for low-energy heavy-ion beams[J]. Review of Scientific Instruments, 2013, 84: 025117. doi: 10.1063/1.4793375
    [20] Liu C, Gassner D, Minty M, et al. Multi-slit emittance measurement study for BNL ERL[R]. BNL-98657-2012-IR, 2012.
    [21] Anderson S G, Rosenzweig J B, LeSage G P, et al. Space-charge effects in high brightness electron beam emittance measurements[J]. Physical Review Special Topics-Accelerators and Beams, 2002, 5: 014201. doi: 10.1103/PhysRevSTAB.5.014201
    [22] Zhang Min. Emittance formula for slits and pepper-pot measurement[R]. FERMILAB-TM-1988, 1996.
    [23] Ludwig T, Volk K, Barth W, et al. Quantization error of slit-grid emittance measurement devices[J]. Rev. Sci. Instrum. 1 April, 1994, 65(4): 1462-1464. doi: 10.1063/1.1144946
    [24] Minty M G, Zimmermann F. Measurement and control of charged particle beams[M]. Berlin, Heidelberg: Springer, 2003: 99-111.
    [25] Forck P. Lecture notes on beam instrumentation and diagnostics[R]. Darmstadt, Germany: Gesellschaft f¨ur Schwerionenforschung (GSI), 2006: 65-77.
    [26] 赵亚亮, 闫芳, 耿会平, 等. 带空间电荷效应的横向发射度测量[J]. 强激光与粒子束, 2018, 30: 015101

    Zhao Yaliang, Yan Fang, Geng Huiping, et al. Transverse Twiss parameter measurement with space charge in CADS Injector[J]. High Power Laser and Particle Beams, 2018, 30: 015101
    [27] Mostacci A, Bacci A, Boscolo M, et al. Analysis methodology of movable emittance-meter measurements for low energy electron beams[J]. Review of Scientific Instruments, 2008, 79: 013303. doi: 10.1063/1.2835715
    [28] Liu Chuyu, Fedotov A, Fuchs A, et al. Transverse beam emittance measurements with multi-slit and moving-slit devices for LEReC[C]//Proceedings of the 7th International Beam Instrumentation Conference. 2018: 486-489.
    [29] Miller T, Blaskiewicz M, Drees A, et al. LEReC instrumentation design & construction[C]//Proceedings of IBIC2016. 2016: 417-421.
    [30] Feigin L, Nause A. Single-shot emittance measurement and optimization of a hybrid photo-cathode gun beam[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1055: 168539. doi: 10.1016/j.nima.2023.168539
    [31] Jia H, Li T, Wang T, et al. High-brightness megahertz-rate beam from a direct-current and superconducting radio-frequency combined photocathode gun[J]. Physical Review Research, 2024, 6: 043165. doi: 10.1103/PhysRevResearch.6.043165
    [32] Feigin L, Weinberg A, Nause A. Algorithm verification of single-shot relativistic emittance proposed measuring method[J]. Electronics, 2022, 11: 2092. doi: 10.3390/electronics11132092
    [33] Staykov L. Design optimization of an emittance measurement system at PITZ[C]//Proceedings of DIPAC'05. 2005: 220-222.
    [34] Tao Tan, Jia Haoyan, Zhao Sheng, et al. Sub-micron normalized emittance measurement for a MeV continuous-wave electron gun[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1045: 167552. doi: 10.1016/j.nima.2022.167552
    [35] 向导. 高亮度电子束发射度、束长和束斑的先进测量方法研究[D]. 北京: 清华大学, 2008: 26-27

    Xiang Dao. Advanced beam measurements of emittance, bunch length and beam size for high-brightness electron beam[D]. Beijing: Tsinghua University, 2008: 26-27)
    [36] DESY. Deutschlands größtes beschleunigerzentrum[EB/OL]. https://www.desy.de/mpyflo/.
    [37] The FLUKA code[EB/OL]. https://fluka.cern/.
    [38] Leica absolute tracker[EB/OL]. https://www.pei-france.com/uploads/tx_etim/Hexagon_-_17549.pdf.
    [39] Crytur. YAP: Ce[EB/OL]. https://www.crytur.com/materials/yap-ce/.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-27
  • 修回日期:  2025-08-05
  • 录用日期:  2025-07-18
  • 网络出版日期:  2025-09-25

目录

    /

    返回文章
    返回