留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

220 GHz共焦波导回旋行波管放大器衍射损耗率分析

安晨翔 周宁 陈坤 王登攀 李冲 桂猷猷 杨以航 王俊清 史彦超

安晨翔, 周宁, 陈坤, 等. 220 GHz共焦波导回旋行波管放大器衍射损耗率分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250041
引用本文: 安晨翔, 周宁, 陈坤, 等. 220 GHz共焦波导回旋行波管放大器衍射损耗率分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250041
An Chenxiang, Zhou Ning, Chen Kun, et al. Analysis of reasonable diffraction loss rate in 220 GHz confocal waveguide gyro-TWT amplifier[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250041
Citation: An Chenxiang, Zhou Ning, Chen Kun, et al. Analysis of reasonable diffraction loss rate in 220 GHz confocal waveguide gyro-TWT amplifier[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250041

220 GHz共焦波导回旋行波管放大器衍射损耗率分析

doi: 10.11884/HPLPB202537.250041
基金项目: 国家自然科学基金项目(12175182)
详细信息
    作者简介:

    安晨翔,anchenxiang@nint.ac.cn

  • 中图分类号: TN12

Analysis of reasonable diffraction loss rate in 220 GHz confocal waveguide gyro-TWT amplifier

  • 摘要: 共焦波导结构因其衍射损耗可降低模式密度的特性,能够有效抑制模式竞争,进而有助于回旋行波管放大器(gyro-TWT)在太赫兹(>100 GHz)频段实现稳定工作。采用理论分析与三维粒子模拟(3D-PIC)相结合的方法,针对220 GHz共焦波导gyro-TWT的衍射损耗率(DLR)展开综合分析。研究结果表明,DLR的大小对gyro-TWT性能具有显著影响。较小的DLR会激发低阶竞争模式的回旋返波振荡(GBWO);而较大的DLR则会大幅降低共焦波导gyro-TWT的束波互作效率、增益、带宽,同时降低其对电子束速度零散的容忍度,应避免使共焦波导gyro-TWT工作在较大的DLR下。在该设计的共焦波导gyro-TWT中,HE07单模稳定工作的DLR不小于0.38 dB/cm,对应的镜面宽度角θ不大于47°。
  • 图  1  CST模拟得到共焦波导HE07模式电场分布

    Figure  1.  Electric field distribution of the HE07 mode in CST simulation

    图  2  CST模拟得到HE06、HE07和HE08模式的DLR随频率变化(Rc = 5.06 mm,θ = 46.6°)

    Figure  2.  Variations of the DLRs of the HE06, HE07 and HE08 modes versus frequency obtained in CST simulation (Rc = 5.06 mm and θ = 46.6°)

    图  3  CST模拟得到DLR随θ变化(HE06、HE07和HE08模式的Rc分别为4.36 mm、5.06 mm和5.76 mm)

    Figure  3.  Variations of the DLRs versus θ obtained in CST simulation (Rc of the HE06, HE07 and HE08 modes are 4.36 mm, 5.06 mm and 5.76 mm, respectively)

    图  4  Gyro-TWT结构示意图

    Figure  4.  Structure of the gyro-TWT

    图  5  输出电场频谱与空间分布

    Figure  5.  Spectrum and the spatial distribution of the electric field

    图  6  不同DLR下,HE07模式的输出功率随腔体轴向长度的变化

    Figure  6.  Variations of the output power versus the axial length of the cavity at different DLRs of the HE07 mode

    图  7  HE07模式的DLR为0.3 dB/cm时,220 GHz共焦波导gyro-TWT在3D-PIC模拟中的输出电场频谱

    Figure  7.  3D-PIC simulation results of the output electric field spectrum of the 220 GHz two sectional confocal waveguide gyro-TWT with the 0.3 dB/cm DLR of the HE07 mode

    图  8  表1参数下HE06和HE07模式的色散关系

    Figure  8.  Dispersion relations of the HE06 and HE07 mode at the parameters in Table 1

    图  9  不同DLR下,HE06模式GBWO起振所需的谐振腔长度

    Figure  9.  GBWO cavity length of the HE06 mode at different DLRs

    图  10  不同DLR和电子束速度零散下束波互作用效率的非线性理论中计算结果

    Figure  10.  Variation of the beam wave interaction efficiency versus the axial position of the cavity

    图  11  不同DLR和电子束速度零散下增益随频率变化的非线性理论计算结果

    Figure  11.  Variation of the gain versus frequency

    表  1  共焦波导gyro-TWT电参数

    Table  1.   Electron parameters of confocal waveguide gyro-TWT

    beam voltage
    Ub/kV
    beam current
    Ib/A
    magnetic field
    B0/T
    pitch factor
    α
    guiding center radius
    Rb/mm
    input power
    Pin/W
    30 7 7.91 1.2 0.76 10
    下载: 导出CSV
  • [1] He Wenlong, Donaldson C R, Zhang Liang, et al. Broadband amplification of low-terahertz signals using axis-encircling electrons in a helically corrugated interaction region[J]. Physical Review Letters, 2017, 119: 184801. doi: 10.1103/PhysRevLett.119.184801
    [2] Xiao Renzhen, Chen Kun. Efficiency improvement studies of sub-terahertz multiwave Cherenkov generator with a coaxial coupler[J]. IEEE Transactions on Electron Devices, 2023, 70(8): 4401-4406. doi: 10.1109/TED.2023.3285726
    [3] Li Xiaoze, Wang Jianguo, Sun Jun, et al. Experimental study on a high-power subterahertz source generated by an overmoded surface wave oscillator with fast startup[J]. IEEE Transactions on Electron Devices, 2013, 60(9): 2931-2935. doi: 10.1109/TED.2013.2273489
    [4] 肖仁珍. 相对论返波管研究进展[J]. 现代应用物理, 2022, 13: 020101 doi: 10.12061/j.issn.2095-6223.2022.020101

    Xiao Renzhen. Research progress of relativistic backward wave oscillator[J]. Modern Applied Physics, 2022, 13: 020101 doi: 10.12061/j.issn.2095-6223.2022.020101
    [5] Sirigiri J R, Shapiro M A, Temkin R J. High-power 140-GHz quasioptical gyrotron traveling-wave amplifier[J]. Physical Review Letters, 2003, 90: 258302. doi: 10.1103/PhysRevLett.90.258302
    [6] Joye C D, Shapiro M A, Sirigiri J R, et al. Progress of a 140 GHz, 1 kW confocal Gyro-TWT amplifier[C]//Proceedings of 2007 IEEE International Vacuum Electronics Conference. 2007.
    [7] 胡鹏, 孙迪敏, 蒋艺, 等. 低速度零散的双阳极磁控注入电子枪设计[J]. 强激光与粒子束, 2013, 25(3): 671-674 doi: 10.3788/HPLPB20132503.0671

    Hu Peng, Sun Dimin, Jiang Yi, et al. Design of double-anode magnetic injection with low velocity spread[J]. High Power Laser and Particle Beams, 2013, 25(3): 671-674 doi: 10.3788/HPLPB20132503.0671
    [8] 蒋艺, 陈洪斌, 马国武, 等. 共焦波导结构回旋行波管的设计与仿真[J]. 强激光与粒子束, 2012, 24(2): 403-406 doi: 10.3788/HPLPB20122402.0403

    Jiang Yi, Chen Hongbin, Ma Guowu, et al. Design and simulation of confocal gyro-travelling wave tube[J]. High Power Laser and Particle Beams, 2012, 24(2): 403-406 doi: 10.3788/HPLPB20122402.0403
    [9] Yang Youwei, Yu Sheng, Liu Yinghui, et al. Efficiency enhancement of a 170 GHz confocal gyrotron traveling wave tube[J]. Journal of Fusion Energy, 2015, 34(4): 721-726. doi: 10.1007/s10894-015-9863-1
    [10] Liu Dagang, Tang Xinbing, Yan Yang, et al. Design of confocal waveguide interaction structure for a 220 GHz gyro-TWT[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(6): 650-662. doi: 10.1080/09205071.2017.1306463
    [11] An Chenxiang, Zhang Dian, Zhang Jun, et al. Theoretical analysis and PIC simulation of a 220-GHz second-harmonic confocal waveguide gyro-TWT amplifier[J]. IEEE Transactions on Electron Devices, 2019, 66(9): 4016-4021. doi: 10.1109/TED.2019.2925895
    [12] Xu Shouxi, Zhang Jian, Geng Zhihui, et al. Investigation of a 0.34-THz quasi-optical gyrotron traveling wave amplifier[J]. IEEE Transactions on Plasma Science, 2024, 52(3): 1033-1038. doi: 10.1109/TPS.2024.3370695
    [13] 胡鹏, 蔡金赤, 蒋艺, 等. 共焦波导回旋行波管准光注入结构设计[J]. 强激光与粒子束, 2013, 25(5): 1337-1340 doi: 10.3788/HPLPB20132505.1337

    Hu Peng, Cai Jinchi, Jiang Yi, et al. Design of quasi-optical input structure for confocal gyro-TWT[J]. High Power Laser and Particle Beams, 2013, 25(5): 1337-1340 doi: 10.3788/HPLPB20132505.1337
    [14] 胡鹏, 朱辉, 蒋艺, 等. 0.4THz回旋行波管的设计与模拟[J]. 强激光与粒子束, 2012, 24(12): 2865-2868 doi: 10.3788/HPLPB20122412.2865

    Hu Peng, Zhu Hui, Jiang Yi, et al. Design and simulation of 0.4 THz gyro-traveling wave tube[J]. High Power Laser and Particle Beams, 2012, 24(12): 2865-2868 doi: 10.3788/HPLPB20122412.2865
    [15] Nusinovich G S. To the theory of gyrotrons with confocal resonators[J]. Physics of Plasmas, 2019, 26: 053107. doi: 10.1063/1.5099909
    [16] Yao Yelei, Sun Yibin, Dai Xinge, et al. Simulation study on a planar quasi-optical waveguide circuit for a W-band gyro-TWT with stability improvement[J]. IEEE Transactions on Electron Devices, 2023, 70(6): 3288-3294. doi: 10.1109/TED.2023.3263823
    [17] 李志良, 冯进军, 刘本田, 等. 140 GHz共焦波导结构回旋行波管放大器[J]. 太赫兹科学与电子信息学报, 2018, 16(5): 767-771,780 doi: 10.11805/TKYDA201805.0767

    Li Zhiliang, Feng Jinjun, Liu Bentian, et al. 140 GHz confocal waveguide Gyrotron-Traveling Wave Tube amplifier[J]. Journal of Terahertz Science and Electronic Information Technology, 2018, 16(5): 767-771,780 doi: 10.11805/TKYDA201805.0767
    [18] Yang Jie, Xu Shouxi, Wang Yong, et al. Theoretical analysis of a 0.22THz multistage confocal waveguide gyro-TWT with circle-sector-shaped electron beam[J]. AIP Advances, 2021, 11: 095217. doi: 10.1063/5.0063867
    [19] 夏建波, 王建勋, 付浩, 等. W波段共焦波导回旋行波管色散特性和衍射损耗研究[J]. 真空科学与技术学报, 2017, 37(1): 28-33

    Xia Jianbo, Wang Jianxun, Fu Hao, et al. Simulation of dispersion characteristics and diffraction loss of W-band confocal waveguide gyro-TWT[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(1): 28-33
    [20] Barker R J, Booske J H, Luhmann N C Jr, et al. Modern microwave and millimeter-wave power electronics[M]. New Jersey: John Wiley & Sons, 2005: 872.
    [21] Yao Yelei, Wang Jianxun, Li Hao, et al. Propagation characteristics of confocal waveguides based on spheroidal functions for a W-band gyro-TWT[J]. IEEE Transactions on Electron Devices, 2017, 64(4): 1781-1786. doi: 10.1109/TED.2017.2665588
    [22] Sun Wei, Yu Sheng, Wang Zhipeng, et al. Linear and nonlinear analyses of a 0.34-thz confocal waveguide gyro-TWT[J]. IEEE Transactions on Plasma Science, 2018, 46(3): 511-517. doi: 10.1109/TPS.2018.2794380
    [23] Nusinovich G S, Li H. Theory of gyro-travelling-wave tubes at cyclotron harmonics[J]. International Journal of Electronics, 1992, 72(5/6): 895-907.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  54
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-08
  • 修回日期:  2025-07-10
  • 录用日期:  2025-07-18
  • 网络出版日期:  2025-07-19

目录

    /

    返回文章
    返回