[1] |
肖仁珍. 相对论返波管研究进展[J]. 现代应用物理, 2022, 13:020101 doi: 10.12061/j.issn.2095-6223.2022.020101Xiao Renzhen. Research progress of relativistic backward wave oscillator[J]. Modern Applied Physics, 2022, 13: 020101 doi: 10.12061/j.issn.2095-6223.2022.020101
|
[2] |
Chen Kun, Xiao Renzhen, Zhai Yonggui, et al. Asymmetric mode competition in an X-band dual-mode relativistic backward wave oscillator[J]. IEEE Transactions on Electron Devices, 2024, 71(7): 4300-4305. doi: 10.1109/TED.2024.3397633
|
[3] |
Miao Tianze, Xiao Renzhen, Shi Yanchao, et al. Experimental demonstration of dual-mode relativistic backward wave oscillator with a beam filtering ring packaged with permanent magnet[J]. IEEE Electron Device Letters, 2023, 44(4): 662-665. doi: 10.1109/LED.2023.3242778
|
[4] |
Ju Jinchuan, Ge Xingjun, Zhang Wei, et al. Coherent combining of phase-steerable high power microwaves generated by two X-band triaxial klystron amplifiers with pulsed magnetic fields[J]. Physical Review Letters, 2023, 130: 085002. doi: 10.1103/PhysRevLett.130.085002
|
[5] |
曹亦兵, 孙钧, 宋志敏, 等. C波段长脉冲相对论返波管设计与实验[J]. 强激光与粒子束, 2018, 30:053004 doi: 10.11884/HPLPB201830.170470Cao Yibin, Sun Jun, Song Zimin, et al. Design and experiment of long-pulse C-band relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2018, 30: 053004 doi: 10.11884/HPLPB201830.170470
|
[6] |
王东阳, 滕雁, 史彦超, 等. Ka波段TM02模式低磁场相对论返波管初步实验研究[J]. 强激光与粒子束, 2018, 30:073003 doi: 10.11884/HPLPB201830.170436Wang Dongyang, Teng Yan, Shi Yanchao, et al. Preliminary experimental study on a Ka-band RBWO operating at TM02 mode with low guiding magnetic field[J]. High Power Laser and Particle Beams, 2018, 30: 073003 doi: 10.11884/HPLPB201830.170436
|
[7] |
Westerhof E, Austin M E, Kubo S, et al. Summary of EC-17: the 17th joint workshop on electron cyclotron emission and electron cyclotron resonance heating (Deurne, The Netherlands, 7–10 May 2012)[J]. Nuclear Fusion, 2013, 53: 027002. doi: 10.1088/0029-5515/53/2/027002
|
[8] |
Omori T, Henderson M A, Albajar F, et al. Overview of the ITER EC H&CD system and its capabilities[J]. Fusion Engineering and Design, 2011, 86(6/8): 951-954.
|
[9] |
Kasugai A, Sakamoto K, Takahashi K, et al. Steady-state operation of 170 GHz–1 MW gyrotron for ITER[J]. Nuclear Fusion, 2008, 48: 054009. doi: 10.1088/0029-5515/48/5/054009
|
[10] |
胡林林, 孙迪敏, 黄麒力, 等. 105/140 GHz双频兆瓦回旋管实现1.0 MW脉冲输出[J]. 强激光与粒子束, 2023, 35:023001 doi: 10.11884/HPLPB202335.220388Hu Linlin, Sun Dimin, Huang Qili, et al. 1.0 MW pulse power achieved in 105/140 GHz dual-frequency MW-level gyrotron[J]. High Power Laser and Particle Beams, 2023, 35: 023001 doi: 10.11884/HPLPB202335.220388
|
[11] |
Granatstein V L, Herndon M, Sprangle P, et al. Gigawatt microwave from an intense relativistic electron beam[J]. Plasma Physics, 1975, 17(1): 23-28. doi: 10.1088/0032-1028/17/1/003
|
[12] |
Zaitsev N I, Ginzburg N S, Zavol’skii N A, et al. Highly efficient relativistic SHF gyrotron with a microsecond pulse width[J]. Technical Physics Letters, 2001, 27(4): 266-270. doi: 10.1134/1.1370197
|
[13] |
Zaitsev N I, Ginzburg N S, Ilyakov E V, et al. X-band high-efficiency relativistic gyrotron[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 840-845. doi: 10.1109/TPS.2002.801555
|
[14] |
Kartikeyan M V, Borie E, Thumm M K A. Gyrotrons: high-power microwave and millimeter wave technology[M]. Berlin: Springer, 2004: 33.
|
[15] |
张点, 安晨翔, 张军, 等. 毫米波回旋速调管放大器的自洽非线性数值模拟[J]. 强激光与粒子束, 2021, 33:093002 doi: 10.11884/HPLPB202133.210129Zhang Dian, An Chenxiang, Zhang Jun, et al. Self-consistent nonlinear numerical simulation of millimeter wave gyro-klystron amplifiers[J]. High Power Laser and Particle Beams, 2021, 33: 093002 doi: 10.11884/HPLPB202133.210129
|
[16] |
顾玲, 刘飞, 刘迎辉. 复合腔回旋管高频结构[J]. 强激光与粒子束, 2014, 26:013008 doi: 10.3788/HPLPB20142601.13008Gu Ling, Liu Fei, Liu Yinghui. High-frequency structure for complex cavity gyrotron with gradual transition[J]. High Power Laser and Particle Beams, 2014, 26: 013008 doi: 10.3788/HPLPB20142601.13008
|
[17] |
Dumbrajs O, Liu Shenggang. Kinetic theory of electron-cyclotron resonance masers with asymmetry of the electron beam in a cavity[J]. IEEE Transactions on Plasma Science, 1992, 20(3): 126-132. doi: 10.1109/27.142811
|
[18] |
An Chenxiang, Zhang Dian, Zhang Jjun, et al. Theoretical analysis and Vsim simulation of a low-voltage high-efficiency 250 GHz gyrotron[J]. Physics of Plasmas, 2018, 25: 023108. doi: 10.1063/1.5008762
|
[19] |
Danly B G, Temkin R J. Generalized nonlinear harmonic gyrotron theory[J]. Physics of Fluids, 1986, 29(2): 561-567. doi: 10.1063/1.865446
|
[20] |
An Chenxiang, Zhang Dian, Zhang Jun, et al. Theoretical analysis and PIC simulation of a 220-GHz second-harmonic confocal waveguide gyro-TWT amplifier[J]. IEEE Transactions on Electron Devices, 2019, 66(9): 4016-4021. doi: 10.1109/TED.2019.2925895
|
[21] |
Sun Wei, Yu Sheng, Wang Zhipeng, et al. Linear and nonlinear analyses of a 0.34-THz confocal waveguide gyro-TWT[J]. IEEE Transactions on Plasma Science, 2018, 46(3): 511-517. doi: 10.1109/TPS.2018.2794380
|