留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论强流电子束驱动的X波段同轴回旋管腔体设计

安晨翔 周宁 陈坤 王登攀 李冲 桂猷猷 杨以航 崔新红 史彦超

安晨翔, 周宁, 陈坤, 等. 相对论强流电子束驱动的X波段同轴回旋管腔体设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250042
引用本文: 安晨翔, 周宁, 陈坤, 等. 相对论强流电子束驱动的X波段同轴回旋管腔体设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250042
An Chenxiang, Zhou Ning, Chen Kun, et al. Design of X-band coaxial gyrotron cavity driven by intense relativistic electron beam[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250042
Citation: An Chenxiang, Zhou Ning, Chen Kun, et al. Design of X-band coaxial gyrotron cavity driven by intense relativistic electron beam[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250042

相对论强流电子束驱动的X波段同轴回旋管腔体设计

doi: 10.11884/HPLPB202537.250042
基金项目: 国家自然科学基金项目(12175182)
详细信息
    作者简介:

    安晨翔,anchenxiang@nint.ac.cn

  • 中图分类号: TN12

Design of X-band coaxial gyrotron cavity driven by intense relativistic electron beam

  • 摘要: 在爆炸发射阴极驱动下,相对论回旋管常因超高束流电流(>300A)易发生虚阴极现象,电子束也极易轰击导体内表面,并伴随回旋共振(Cyclotron Resonance)和回旋返波振荡(Gyro-Backward-Wave Oscillation, BWO)模式的非预期激励。本研究采用通过理论分析与三维粒子模拟相结合的方法,系统探究了X波段同轴回旋管腔体在强流相对论电子束(Intense Relativistic Electron Beam, IREB)驱动下的电磁特性。结果表明,通过腔体几何优化与电子书参数匹配可实现强流相对论电子束的稳定传输与TE01单模工作。腔体品质因数Qcav的合理取值对于抑制寄生模式竞争至关重要。当Qcav<65时,会激励TE21-BWO模式;Qcav>90时,会激励TE31回旋共振模式。而Qcav=65~90区间内可稳定维持TE01单模振荡,输出功率达35 MW(电压300 kV、电流500 A、横纵速度比1.2),对应效率34.4%。进一步研究表明,该腔体对电子束速度零散(Δβ<25%)具备显著鲁棒性,为高功率微波源设计提供了重要参考。
  • 图  1  电子束传输和腔体结构示意图

    Figure  1.  Schematic diagram of electron beam propagation and cavity structure

    图  2  不同模式的xmnRout /Rin的关系

    Figure  2.  xmn of different mode versus the Rout /Rin

    图  3  Ub = 300 kV, B0 = 0.5 T and ɑ = 1.2时不同模式的色散曲线

    Figure  3.  Dispersion curves under different modes at the Ub = 300 kV, B0 = 0.5 T and ɑ = 1.2

    图  4  各模式的耦合系数与Rb的关系

    Figure  4.  Couple factor under each mode versus Rb

    图  5  不同轴向位置处回旋管热腔的归一化振幅和束波互作用效率(Ub=300 kV, Ib=500 A, B0=0.48 T, ɑ=1.2, and Rb=13.1 mm)

    Figure  5.  Normalized amplitude of hot cavity and efficiency versus distance of the axle of the cavity (Ub=300 kV, Ib=500 A, B0=0.48 T, ɑ=1.2, and Rb=13.1 mm)

    图  6  Qcav超过90时三维PIC模拟中方位角电场Ephi的分布和FFT值

    Figure  6.  The distribution and the FFT of the azimuthal electric field Ephi in 3D PIC simulation under the Qcav more than 90

    图  7  TE01和TE31模式的起振电流Istart(实线为Qcav=125,虚线为Qcav=90)

    Figure  7.  The start oscillation currents Istart of TE01 and TE31 modes

    图  8  Qcav小于60时三维PIC模拟中方位角电场Ephi的分布和FFT

    Figure  8.  The distribution and the FFT of the azimuthal electric field Ephi in 3D PIC simulation under the Qcav less than 60

    图  9  TE21模式BWO的腔体长度随起振电流的变化情况

    Figure  9.  Variations of cavity length thresholds of TE21 mode BWO versus the start current

    图  10  Qcav小于60时,20 ns至30 ns的方位角电场Ephi的 FFT 值和输出功率随时间的变化情况

    Figure  10.  FFT of the azimuthal electric field Ephi at 20 ns to 30 ns and output power variation over time under the Qcav less than 60

    图  11  最佳参数下三维PIC模拟方位角电场Ephi的分布和FFT

    Figure  11.  The distribution and the FFT of the azimuthal electric field Ephi under the optimal parameters of 3D PIC simulation

    图  12  输出功率随时间的变化

    Figure  12.  Output power variation over time

    图  13  输出功率随电子束速度零散的变化

    Figure  13.  The output power variation with velocity spread of electron beams

  • [1] 肖仁珍. 相对论返波管研究进展[J]. 现代应用物理, 2022, 13:020101 doi: 10.12061/j.issn.2095-6223.2022.020101

    Xiao Renzhen. Research progress of relativistic backward wave oscillator[J]. Modern Applied Physics, 2022, 13: 020101 doi: 10.12061/j.issn.2095-6223.2022.020101
    [2] Chen Kun, Xiao Renzhen, Zhai Yonggui, et al. Asymmetric mode competition in an X-band dual-mode relativistic backward wave oscillator[J]. IEEE Transactions on Electron Devices, 2024, 71(7): 4300-4305. doi: 10.1109/TED.2024.3397633
    [3] Miao Tianze, Xiao Renzhen, Shi Yanchao, et al. Experimental demonstration of dual-mode relativistic backward wave oscillator with a beam filtering ring packaged with permanent magnet[J]. IEEE Electron Device Letters, 2023, 44(4): 662-665. doi: 10.1109/LED.2023.3242778
    [4] Ju Jinchuan, Ge Xingjun, Zhang Wei, et al. Coherent combining of phase-steerable high power microwaves generated by two X-band triaxial klystron amplifiers with pulsed magnetic fields[J]. Physical Review Letters, 2023, 130: 085002. doi: 10.1103/PhysRevLett.130.085002
    [5] 曹亦兵, 孙钧, 宋志敏, 等. C波段长脉冲相对论返波管设计与实验[J]. 强激光与粒子束, 2018, 30:053004 doi: 10.11884/HPLPB201830.170470

    Cao Yibin, Sun Jun, Song Zimin, et al. Design and experiment of long-pulse C-band relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2018, 30: 053004 doi: 10.11884/HPLPB201830.170470
    [6] 王东阳, 滕雁, 史彦超, 等. Ka波段TM02模式低磁场相对论返波管初步实验研究[J]. 强激光与粒子束, 2018, 30:073003 doi: 10.11884/HPLPB201830.170436

    Wang Dongyang, Teng Yan, Shi Yanchao, et al. Preliminary experimental study on a Ka-band RBWO operating at TM02 mode with low guiding magnetic field[J]. High Power Laser and Particle Beams, 2018, 30: 073003 doi: 10.11884/HPLPB201830.170436
    [7] Westerhof E, Austin M E, Kubo S, et al. Summary of EC-17: the 17th joint workshop on electron cyclotron emission and electron cyclotron resonance heating (Deurne, The Netherlands, 7–10 May 2012)[J]. Nuclear Fusion, 2013, 53: 027002. doi: 10.1088/0029-5515/53/2/027002
    [8] Omori T, Henderson M A, Albajar F, et al. Overview of the ITER EC H&CD system and its capabilities[J]. Fusion Engineering and Design, 2011, 86(6/8): 951-954.
    [9] Kasugai A, Sakamoto K, Takahashi K, et al. Steady-state operation of 170 GHz–1 MW gyrotron for ITER[J]. Nuclear Fusion, 2008, 48: 054009. doi: 10.1088/0029-5515/48/5/054009
    [10] 胡林林, 孙迪敏, 黄麒力, 等. 105/140 GHz双频兆瓦回旋管实现1.0 MW脉冲输出[J]. 强激光与粒子束, 2023, 35:023001 doi: 10.11884/HPLPB202335.220388

    Hu Linlin, Sun Dimin, Huang Qili, et al. 1.0 MW pulse power achieved in 105/140 GHz dual-frequency MW-level gyrotron[J]. High Power Laser and Particle Beams, 2023, 35: 023001 doi: 10.11884/HPLPB202335.220388
    [11] Granatstein V L, Herndon M, Sprangle P, et al. Gigawatt microwave from an intense relativistic electron beam[J]. Plasma Physics, 1975, 17(1): 23-28. doi: 10.1088/0032-1028/17/1/003
    [12] Zaitsev N I, Ginzburg N S, Zavol’skii N A, et al. Highly efficient relativistic SHF gyrotron with a microsecond pulse width[J]. Technical Physics Letters, 2001, 27(4): 266-270. doi: 10.1134/1.1370197
    [13] Zaitsev N I, Ginzburg N S, Ilyakov E V, et al. X-band high-efficiency relativistic gyrotron[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 840-845. doi: 10.1109/TPS.2002.801555
    [14] Kartikeyan M V, Borie E, Thumm M K A. Gyrotrons: high-power microwave and millimeter wave technology[M]. Berlin: Springer, 2004: 33.
    [15] 张点, 安晨翔, 张军, 等. 毫米波回旋速调管放大器的自洽非线性数值模拟[J]. 强激光与粒子束, 2021, 33:093002 doi: 10.11884/HPLPB202133.210129

    Zhang Dian, An Chenxiang, Zhang Jun, et al. Self-consistent nonlinear numerical simulation of millimeter wave gyro-klystron amplifiers[J]. High Power Laser and Particle Beams, 2021, 33: 093002 doi: 10.11884/HPLPB202133.210129
    [16] 顾玲, 刘飞, 刘迎辉. 复合腔回旋管高频结构[J]. 强激光与粒子束, 2014, 26:013008 doi: 10.3788/HPLPB20142601.13008

    Gu Ling, Liu Fei, Liu Yinghui. High-frequency structure for complex cavity gyrotron with gradual transition[J]. High Power Laser and Particle Beams, 2014, 26: 013008 doi: 10.3788/HPLPB20142601.13008
    [17] Dumbrajs O, Liu Shenggang. Kinetic theory of electron-cyclotron resonance masers with asymmetry of the electron beam in a cavity[J]. IEEE Transactions on Plasma Science, 1992, 20(3): 126-132. doi: 10.1109/27.142811
    [18] An Chenxiang, Zhang Dian, Zhang Jjun, et al. Theoretical analysis and Vsim simulation of a low-voltage high-efficiency 250 GHz gyrotron[J]. Physics of Plasmas, 2018, 25: 023108. doi: 10.1063/1.5008762
    [19] Danly B G, Temkin R J. Generalized nonlinear harmonic gyrotron theory[J]. Physics of Fluids, 1986, 29(2): 561-567. doi: 10.1063/1.865446
    [20] An Chenxiang, Zhang Dian, Zhang Jun, et al. Theoretical analysis and PIC simulation of a 220-GHz second-harmonic confocal waveguide gyro-TWT amplifier[J]. IEEE Transactions on Electron Devices, 2019, 66(9): 4016-4021. doi: 10.1109/TED.2019.2925895
    [21] Sun Wei, Yu Sheng, Wang Zhipeng, et al. Linear and nonlinear analyses of a 0.34-THz confocal waveguide gyro-TWT[J]. IEEE Transactions on Plasma Science, 2018, 46(3): 511-517. doi: 10.1109/TPS.2018.2794380
  • 加载中
图(13)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  14
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-08
  • 修回日期:  2025-06-01
  • 录用日期:  2025-05-25
  • 网络出版日期:  2025-06-16

目录

    /

    返回文章
    返回