留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种扩展移相调制的双有源桥变换器参数优化

孙伟翔 王新征 石磊磊 李嘉琪 林江 刘世超

孙伟翔, 王新征, 石磊磊, 等. 一种扩展移相调制的双有源桥变换器参数优化[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250043
引用本文: 孙伟翔, 王新征, 石磊磊, 等. 一种扩展移相调制的双有源桥变换器参数优化[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250043
Sun Weixiang, Wang Xinzheng, Shi Leilei, et al. Parameter optimization of dual active bridge converter under extended phase shift modulation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250043
Citation: Sun Weixiang, Wang Xinzheng, Shi Leilei, et al. Parameter optimization of dual active bridge converter under extended phase shift modulation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250043

一种扩展移相调制的双有源桥变换器参数优化

doi: 10.11884/HPLPB202537.250043
基金项目: 国家自然科学基金联合基金重点项目(U2241284)
详细信息
    作者简介:

    孙伟翔,1379847445@qq.com

    通讯作者:

    王新征,aloshawang@163.com

  • 中图分类号: TN86

Parameter optimization of dual active bridge converter under extended phase shift modulation

  • 摘要: 随着有源相控阵雷达的发展,相控阵雷达对发送接收(TR)电源的需求不断提高,宽输入电压范围、高频化和高效率的TR电源成为当今的主流研究方向。双有源桥(DAB)变换器能够实现宽输入电压范围,并且控制方式多样化,在TR电源领域具有广泛的应用前景,但DAB变换器的电感量和开关频率等系统参数对TR电源的传输功率和功率MOS管的通态电流影响很大。基于DAB变换器中的扩展移相(EPS)调制方法,推导了其功率传输特性和电感电流大小等表达式,并以考虑过载需求的最大传输功率、MOS器件最大通态电流降额设计、最小输出电压纹波频率为限制指标,提出一种基于EPS调制下的DAB电路参数优化设计方法,基于参数限制规划了可靠运行区ROA,为设计相应的电感值、开关频率,优化DAB参数提供参考依据。最后通过对两路输出的DAB变换器进行相应的MATLAB仿真分析,仿真结果表明输出电压纹波、MOS管通态电流大小、输出功率符合预期需求指标,验证上述理论推导的准确性。
  • 图  1  双有源全桥DC/DC变换器拓扑结构

    Figure  1.  Topology of dual active bridge DC/DC converter

    图  2  基于SPS调制的DAB驱动信号、原副边方波电压和电感电流波形

    Figure  2.  DAB waveform of driving signal, primary and secondary square wave voltage and inductance current under SPS modulation

    图  3  等效移相比Df下SPS、DPS、EPS调制传输功率范围对比[12]

    Figure  3.  Comparison of transmission power range of SPS, DPS and EPS modulation under equivalent phase shift Angle Df [12]

    图  4  基于EPS调制的DAB驱动信号、原副边方波电压和电感电流波形

    Figure  4.  DAB waveform of driving signal, primary and secondary square wave voltage and inductance current under EPS modulation

    图  5  EPS调制下DAB变换器传输功率特性

    Figure  5.  Transmission power characteristics of DAB converter under EPS modulation

    图  6  EPS调制下最大DAB传输功率(投影于D1P*面上)

    Figure  6.  Maximum DAB transmission power under EPS modulation (projected on D1P*)

    图  7  考虑传输功率的DAB fsLlk设计约束关系

    Figure  7.  The design constraints of DAB fs and Llkfor transmitted power are considered

    图  8  定频控制下的Llk和传输功率PEPS_M_min_n约束

    Figure  8.  Llk and transmission power PEPS_M_min_n constraints under fixed-frequency control

    图  9  器件最大通态电流的fsLlk设计约束关系

    Figure  9.  The design constraint relationship between fs and Llk of the maximum on-state current of the device

    图  10  DAB可靠运行区

    Figure  10.  Reliable operation area of DAB

    图  11  DAB多模块输出并联仿真电路原理图

    Figure  11.  Schematic diagram of the parallel simulation circuit for the multi-module output of DAB

    图  12  i1iSEC_MOS_n_ti1+ i2Vo 稳态波形图

    Figure  12.  Steady-state waveform diagrams of i1iSEC_MOS_n_ti1+ i2 and Vo

    图  13  输出电压纹波Vp-pDD1Vin关系

    Figure  13.  The relationship between Vp-pD&D1 and Vin

  • [1] 包敏杰, 俞小莉, 黄瑞, 等. 大功率燃料电池建模与电压一致性分析[J]. 储能科学与技术, 2024, 13(3): 952-961

    Bao Minjie, Yu Xiaoli, Huang Rui, et al. High-power fuel cell modeling and voltage uniformity analysis[J]. Energy Storage Science and Technology, 2024, 13(3): 952-962
    [2] 张才清, 孙轶, 张磊. 高功率密度雷达脉冲负载电源[J]. 现代雷达, 2021, 43(3):94-98

    Zhang Caiqing, Sun Yi, Zhang Lei. High power density pulse power source design[J]. Modern Radar, 2021, 43(3): 94-98
    [3] 王正之, 白璐, 黄晓燕. 相控阵雷达阵面电源储能电容的特性研究[J]. 数字技术与应用, 2020, 38(5):40-41

    Wang Zhengzhi, Bai Lu, Huang Xiaoyan. Research on the characteristics of energy-storage capacitor of the power supply for phased array radar[J]. Digital Technology and Application, 2020, 38(5): 40-41
    [4] 张宝敏, 曾钢. 新型固定式相控阵雷达供电系统研究[J]. 中文科技期刊数据库(全文版)工程技术, 2023(6):58-61

    Zhang Baomin, Zeng Gang. Research on new fixed phased array radar power supply system[J]. Chinese Science and Technology Periodicals Database (Full-text Edition) Engineering Technology, 2023(6): 58-61
    [5] 蒋华, 陈善华. 一种雷达阵面T/R供电模块的研究与实践[J]. 现代雷达, 2012, 34(7):64-67 doi: 10.3969/j.issn.1004-7859.2012.07.016

    Jiang Hua, Chen Shanhua. Research and practice of a power module for radar array T/R[J]. Modern Radar, 2012, 34(7): 64-67 doi: 10.3969/j.issn.1004-7859.2012.07.016
    [6] 操建生, 于新红, 许立斌, 等. 双有源全桥变换器无模型预测控制策略[J]. 微特电机, 2024, 52(2):64-69 doi: 10.3969/j.issn.1004-7018.2024.02.012

    Cao Jiansheng, Yu Xinhong, Xu Libin, et al. Model-free predictive control strategy for dual active full-bridge converters[J]. Small & Special Electrical Machines, 2024, 52(2): 64-69 doi: 10.3969/j.issn.1004-7018.2024.02.012
    [7] 杨向真, 王锦秀, 孔令浩, 等. 电压不匹配运行条件下双有源桥变换器的效率优化方法[J]. 电工技术学报, 2022, 37(24):6239-6251

    Yang Xiangzhen, Wang Jinxiu, Kong Linghao, et al. Efficiency optimization method of DAB converters under wide-voltage operating conditions[J]. Transactions of China Electrotechnical Society, 2022, 37(24): 6239-6251
    [8] 刘春喜, 徐金荣, 刘文强, 等. 扩展移相控制的DAB变换器双目标优化策略[J]. 电子测量与仪器学报, 2024, 38(10):180-190

    Liu Chunxi, Xu Jinrong, Liu Wenqiang, et al. Dual-objective optimization strategy for DAB converter with extended phase shift control[J]. Journal of Electronic Measurement and Instrumentation, 2024, 38(10): 180-190
    [9] 王祺, 张泽轲, 刘彬, 等. 双重移相控制下双有源桥变换器最小回流功率全局优化控制[J]. 电网技术, 2024, 48(9):3921-3930

    Wang Qi, Zhang Zeke, Liu Bin, et al. Global optimization control of minimum backflow power for dual-active-bridge converters under dual-phase-shift control[J]. Power System Technology, 2024, 48(9): 3921-3930
    [10] 曾进辉, 饶尧, 兰征, 等. 三重移相控制的DAB变换器多目标统一优化控制策略[J]. 电源学报, 2024, 22(5):74-85,132

    Zeng Jinhui, Rao Yao, Lan Zheng, et al. Multi-objective unified optimal control strategy for DAB converter with triple-phase-shift control[J]. Journal of Power Supply, 2024, 22(5): 74-85,132
    [11] Huang Jun, Wang Yue, Li Zhuoqiang, et al. Unified triple-phase-shift control to minimize current stress and achieve full soft-switching of isolated bidirectional DC–DC converter[J]. IEEE Transactions on Industrial Electronics, 2016, 63(7): 4169-4179. doi: 10.1109/TIE.2016.2543182
    [12] 黄匀飞, 钟启濠, 欧阳有鹏, 等. 双有源桥变换器拓扑结构与控制策略研究综述[J]. 电源学报, 2024, 22(4):53-65

    Huang Yunfei, Zhong Qihao, Ouyang Youpeng, et al. Overview of topologies and control strategies for dual-active-bridge converters[J]. Journal of Power Supply, 2024, 22(4): 53-65
    [13] 赵彪, 宋强. 双主动全桥DC-DC变换器的理论和应用技术[M]. 北京: 科学出版社, 2017

    Zhao Biao, Song Qiang. Theory and application technology of dual active full-bridge DC-DC converter[M]. Beijing: Science Press, 2017
    [14] 孙志峰. 双有源全桥DC-DC变换器优化调制与并联均流控制[D]. 株洲: 湖南工业大学, 2019

    Sun Zhifeng. Optimal modulation and parallel current sharing control of dual active full-bridge DC-DC converter[D]. Zhuzhou: Hunan University of Technology, 2019
    [15] 童安平, 杭丽君, 李国杰. 三重移相控制下DAB变换器全局优化控制策略及分析[J]. 中国电机工程学报, 2017, 37(20):6037-6049

    Tong Anping, Hang Lijun, Li Guojie. Global optimized control strategy of dual active bridge converter controlled by triple-phase-shift modulation scheme and its analysis[J]. Proceedings of the CSEE, 2017, 37(20): 6037-6049
    [16] 邵持, 童安平, 钱语安, 等. 三重移相调制下DAB变换器全功率范围统一ZVS控制策略[J]. 中国电机工程学报, 2019, 39(19):5644-5655

    Shao Chi, Tong Anping, Qian Yu'an, et al. Triple-phase-shift based unified ZVS modulation strategy of dual active bridge converter for full operation range[J]. Proceedings of the CSEE, 2019, 39(19): 5644-5655
    [17] GJB/Z 35-93, 元器件降额准则[S]

    GJB/Z 35-93, Derating criteria for electrical, electronic and electromechanical parts[S]
  • 加载中
图(13)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  12
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-10
  • 修回日期:  2025-06-30
  • 录用日期:  2025-06-27
  • 网络出版日期:  2025-07-07

目录

    /

    返回文章
    返回