留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自抗扰控制算法多光斑激光固态相变温度解耦控制

陈智君 张良建 张群莉 马晓飞 姚建华

陈智君, 张良建, 张群莉, 等. 自抗扰控制算法多光斑激光固态相变温度解耦控制[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250045
引用本文: 陈智君, 张良建, 张群莉, 等. 自抗扰控制算法多光斑激光固态相变温度解耦控制[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250045
Chen Zhijun, Zhang Liangjian, Zhnag Qunli, et al. Research on decoupled temperature control of multi-spot laser solid-state phase transformation based on ADRC algorithm[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250045
Citation: Chen Zhijun, Zhang Liangjian, Zhnag Qunli, et al. Research on decoupled temperature control of multi-spot laser solid-state phase transformation based on ADRC algorithm[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250045

自抗扰控制算法多光斑激光固态相变温度解耦控制

doi: 10.11884/HPLPB202537.250045
基金项目: 国家重点研发计划项目(2023YFB4603400);浙江省“尖兵”研发攻关计划项目(2023C01064);浙江省“尖兵领雁+X”研发攻关计划(2024SJCZX0040);浙江省高层次人才特殊支持计划(2023R5210)
详细信息
    作者简介:

    陈智君,roll@zjut.edu.cn

    通讯作者:

    姚建华,laser@zjut.edu.cn

  • 中图分类号: TP273

Research on decoupled temperature control of multi-spot laser solid-state phase transformation based on ADRC algorithm

  • 摘要: 针对复杂曲面工件中传统单光斑激光固态相变温控方法的局限性,提出了一种基于自抗扰控制算法(ADRC)的多输入多输出(MIMO)激光固态相变温度解耦控制策略。通过建立多光斑激光固态相变有限元模型,并采用降阶方法提取系统的关键动态特性,以降低计算复杂度,为控制算法设计提供基础。然后对传统fal函数在误差较小区域的高频震颤的问题进行改进,提高系统的观测精度和抗干扰能力,同时采用改进的PSO算法整定ADRC参数,提高参数整定效率。最后,在MATLAB/Simulink与COMSOL平台上进行联合仿真。结果表明,改进后的PSO-ADRC控制器在提高系统响应速度、减少超调量和提升稳态精度方面均优于传统PID与标准ADRC方法,为复杂曲面工件的激光固态相变温控提供了高效、精准的解决方案。
  • 图  1  光斑分布示意图

    Figure  1.  Schematic diagram of light spot distribution

    图  2  COMSOL中的移动热源加载和移动探针提取结果

    Figure  2.  Moving heat source loading and moving probe temperature extraction in COMSOL

    图  3  FOM和ROM中单个通道在6、12、16、32阶下对比

    Figure  3.  Comparison of single channel in FOM and ROM at 6,12,16,32 order

    图  4  FOM和ROM在6、12、16、32阶下的误差

    Figure  4.  Errors of FOM and ROM at 6,12,16,32 order

    图  5  ADRC结构图

    Figure  5.  Structural diagram of ADRC

    图  6  fal与bfal函数曲线对比图

    Figure  6.  Comparison chart between fal function curve and bfal function curve

    图  7  ADRC阶跃响应曲线比较

    Figure  7.  ADRC step response curve comparison and local enlargement

    图  8  PID、ADRC、PSO-ADRC控制系统仿真结果

    Figure  8.  PID,ADRC,PSO-ADRC control system simulation results

    图  9  Simulink和COMSOL联合环境下的温度控制结果

    Figure  9.  The temperature control results in the co-simulation environment of Simulink and COMSOL

  • [1] Zhan Jianbin, Wu Jinzhou, Ma Ruijin, et al. Effect of microstructure on the superelasticity of high-relative-density Ni-rich NiTi alloys fabricated by laser powder bed fusion[J]. Journal of Materials Processing Technology, 2023, 317: 117988. doi: 10.1016/j.jmatprotec.2023.117988
    [2] Ji Chen, Li Kun, Zhan Jianbin, et al. The effects and utility of homogenization and thermodynamic modeling on microstructure and mechanical properties of SS316/IN718 functionally graded materials fabricated by laser-based directed energy deposition[J]. Journal of Materials Processing Technology, 2023, 319: 118084. doi: 10.1016/j.jmatprotec.2023.118084
    [3] Zhan Jianbin, Wu Jinzhou, Ma Ruijin, et al. Tuning the functional properties by laser powder bed fusion with partitioned repetitive laser scanning: toward editable 4D printing of NiTi alloys[J]. Journal of Manufacturing Processes, 2023, 101: 1468-1481. doi: 10.1016/j.jmapro.2023.07.009
    [4] Guo Dongming. High-performance manufacturing[J]. International Journal of Extreme Manufacturing, 2024, 6: 060201. doi: 10.1088/2631-7990/ad7426
    [5] Zhao Jiangtao, Li Chang, Zhan Hao, et al. Study on laser quenching of aircraft gears with rectangular beam based on multi-field coupling mechanism[J]. Applied Physics A, 2025, 131: 47. doi: 10.1007/s00339-024-08174-3
    [6] Song Jingyu, Huang Hui, Wang Xigui, et al. Status and prospects of surface texturing: design, manufacturing and applications[J]. Surface Science and Technology, 2023, 1: 21. doi: 10.1007/s44251-023-00022-5
    [7] 秦跃舟, 朱国力. 基于非线性参数整定PI控制算法的激光淬火温度控制研究[J]. 应用激光, 2020, 40(1):110-114

    Qin Yuezhou, Zhu Guoli. Study on laser quenching temperature control based on nonlinear adjusted parameter for PI control[J]. Applied Laser, 2020, 40(1): 110-114
    [8] 尚军, 李敏娟, 徐宏伟. 基于模糊控制的激光淬火控制算法研究[J]. 应用激光, 2015, 35(1):40-43 doi: 10.3788/AL20153501.0040

    Shang Jun, Li Minjuan, Xu Hongwei. Study on laser quench controlling algorithm based on fussy control[J]. Applied Laser, 2015, 35(1): 40-43 doi: 10.3788/AL20153501.0040
    [9] 徐小刚. 激光相变硬化数值模拟与温度控制技术研究[D]. 济南: 山东大学, 2022

    Xu Xiaogang. Research on numerical simulation and temperature control technology of laser phase transformation hardening[D]. Jinan: Shandong University, 2022
    [10] Lesyk D A, Martinez S, Mordyuk B N, et al. Effects of laser heat treatment combined with ultrasonic impact treatment on the surface topography and hardness of carbon steel AISI 1045[J]. Optics & Laser Technology, 2019, 111: 424-438.
    [11] 张群莉, 李国昌, 董浩芃, 等. 42CrMo钢激光-电磁感应复合淬火过程应力与变形研究[J]. 表面技术, 2024, 53(21):142-152

    Zhang Qunli, Li Guochang, Dong Haopeng, et al. Stress and deformation of 42CrMo steel during laser-electromagnetic induction hybrid quenching process[J]. Surface Technology, 2024, 53(21): 142-152
    [12] Da Silva S L E F. Newton’s cooling law in generalised statistical mechanics[J]. Physica A: Statistical Mechanics and its Applications, 2021, 565: 125539. doi: 10.1016/j.physa.2020.125539
    [13] 王威, 李少甫, 吴昊, 等. 基于反向传播神经网络PID的高功率微波炉温度控制[J]. 强激光与粒子束, 2024, 36:013010 doi: 10.11884/HPLPB202436.230280

    Wang Wei, Li Shaofu, Wu Hao, et al. Research on temperature control of high power microwave oven based on back propagation neural network PID[J]. High Power Laser and Particle Beams, 2024, 36: 013010 doi: 10.11884/HPLPB202436.230280
    [14] Schilders W H A, Vorst H A Rommes J. Model order reduction: theory, research aspects and applications[M]. Berlin: Springer, 2008: 1-10.
    [15] 蒋耀林. 模型降阶方法[M]. 北京: 科学出版社, 2010: 86-89

    Jiang Yaolin. Model reduction methods[M]. Beijing: Science Press, 2010: 86-89
    [16] Castagnotto A, Varona M C, Jeschek L, et al. sss & sssMOR: analysis and reduction of large-scale dynamic systems in MATLAB[J]. at - Automatisierungstechnik, 2017, 65(2): 134-150. doi: 10.1515/auto-2016-0137
    [17] 韩京清. 从PID技术到“自抗扰控制”技术[J]. 控制工程, 2002, 9(3):13-18 doi: 10.3969/j.issn.1671-7848.2002.03.003

    Han Jingqing. From PID technology to active disturbance rejection control technology[J]. Control Engineering of China, 2002, 9(3): 13-18 doi: 10.3969/j.issn.1671-7848.2002.03.003
    [18] Lozgachev G I. On a method of construction of Lyapunov functions[J]. Automation and Remote Control, 1998, 59(10): 1365-1368.
    [19] 陈志旺, 张子振, 曹玉洁. 自抗扰fal函数改进及在四旋翼姿态控制中的应用[J]. 控制与决策, 2018, 33(10):1901-1907

    Chen Zhiwang, Zhang Zizhen, Cao Yujie. Fal function improvement of ADRC and its application in quadrotor aircraft attitude control[J]. Control and Decision, 2018, 33(10): 1901-1907
    [20] 李昌龙, 陈松, 吴炫炫, 等. 基于PSO-ELM的316L不锈钢细长管磁粒研磨内表面粗糙度预测模型[J]. 中国表面工程, 2023, 36(2):212-221 doi: 10.11933/j.issn.1007-9289.20220513001

    Li Changlong, Chen Song, Wu Xuanxuan, et al. Inner surface roughness prediction model of 316L stainless steel slender tube by magnetic abrasive finishing based on PSO-ELM[J]. China Surface Engineering, 2023, 36(2): 212-221 doi: 10.11933/j.issn.1007-9289.20220513001
    [21] Li T Y, Yorke J A. Period three implies chaos[J]. The American Mathematical Monthly, 1975, 82(10): 985-992. doi: 10.1080/00029890.1975.11994008
  • 加载中
图(9)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-12
  • 修回日期:  2026-06-18
  • 录用日期:  2025-06-13
  • 网络出版日期:  2025-06-30

目录

    /

    返回文章
    返回